Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article is concerned with the following Kirchhoff equation: [formula], where a and b are positive constants and h ≠ 0. Under the Berestycki-Lions type conditions on g, we prove that the equation has at least two positive solutions by using variational methods. Furthermore, we obtain the existence of ground state solutions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20240068
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- School of Mathematical Sciences, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- chool of Mathematical Sciences, Capital Normal University, Beijing 100048, P. R. China
autor
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, P. R. China
Bibliografia
- [1] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), no. 1, 305–330, DOI: https://doi.org/10.1090/s0002-9947-96-01532-2.
- [2] M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996) Nonlinear Analysis, vol. 30, 1997, no. 7, pp. 4619–4627, DOI: https://doi.org/10.1016/S0362-546X(97)00169-7.
- [3] J. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in N , J. Math. Anal. Appl. 369 (2010), no. 2, 564–574, DOI: https://doi.org/10.1016/j.jmaa.2010.03.059.
- [4] A. Azzollini, The elliptic Kirchhoff equation in RN perturbed by a local nonlinearity, Differential Integral Equations 25 (2012), no. 5–6, 543–554, DOI: https://doi.org/10.57262/die/1356012678.
- [5] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), no. 4, 313–345, DOI: https://doi.org/10.1007/bf00250555.
- [6] S.-S. Lu, An autonomous Kirchhoff-type equation with general nonlinearity in N , Nonlinear Anal. Real World Appl. 34 (2017), 233–249, DOI: http://dx.doi.org/10.1016/j.nonrwa.2016.09.003.
- [7] W. Chen, Z. Fu and Y. Wu, Positive solutions for nonlinear Schrödinger-Kirchhoff equations in R3, Appl. Math. Lett. 104 (2020), 106274, 6 pp,DOI: https://doi.org/10.1016/j.aml.2020.106274.
- [8] S. Chen and X. Tang, Berestycki-Lions conditions on ground state solutions for Kirchhoff-type problems with variable potentials, J. Math. Phys. 60 (2019), no. 12, 121509, 16 pp, DOI: https://doi.org/10.1063/1.5128177.
- [9] G. M. Figueiredo, N. Ikoma, and JRS. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. Anal. 213 (2014), no. 3, 931–979, DOI: http://dx.doi.org/10.1007/s00205-014-0747-8.
- [10] F. He, D. Qin, and X. Tang, Existence of ground states for Kirchhoff-type problems with general potentials, J. Geom. Anal. 31 (2021), no. 8, 7709–7725, DOI: https://doi.org/10.1007/s12220-020-00546-4.
- [11] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in 3, J. Differential Equations 257 (2014), no. 2, 566–600, DOI: http://dx.doi.org/10.1016/j.jde.2014.04.011.
- [12] Y. Li, F. Li, and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations 253 (2012), no. 7, 2285–2294, DOI: http://dx.doi.org/10.1016/j.jde.2012.05.017.
- [13] Z. Liang, F. Li, and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré C Anal. Non Linéaire 31 (2014), no. 1, 155–167, DOI: https://doi.org/10.1016/J.ANIHPC.2013.01.006.
- [14] J. Liu, J.-F. Liao, and H.-L. Pan, Ground state solution on a non-autonomous Kirchhoff type equation, Comput. Math. Appl. 78 (2019), no. 3, 878–888, DOI: https://doi.org/10.1016/j.camwa.2019.03.009.
- [15] X.-H. Tang and S. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations 56 (2017), no. 4, 110–134, DOI: https://doi.org/10.1007/s00526-017-1214-9.
- [16] Y. Ye and C. -L. Tang, Multiple solutions for Kirchhoff-type equations in N , J. Math. Phys. 54 (2013), no. 8, 081508, 16 pp, DOI: https://doi.org/10.1063/1.4819249.
- [17] F. Zhang and M. Du, Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well, J. Differential Equations 269 (2020), no. 11, 10085–10106, DOI: https://doi.org/10.1016/j.jde.2020.07.013.
- [18] S.-J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on RN , Nonlinear Anal. Real World Appl. 14 (2013), no. 3, 1477–1486, DOI: https://doi.org/10.1016/j.nonrwa.2012.10.010.
- [19] B. Cheng, A new result on multiplicity of nontrivial solutions for the nonhomogenous Schrödinger-Kirchhoff type problem in RN , Mediterr. J. Math. 13 (2016), no. 3, 1099–1116, DOI: https://doi.org/10.1007/s00009-015-0527-1.
- [20] T. Bartsch and Z.-Q Wang, Existence and multiplicity results for some superlinear elliptic problems on RN , Comm. Partial Differential Equations 20 (1995), no. 9–10, 1725–1741, DOI: https://doi.org/10.1080/03605309508821149.
- [21] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), no. 4, 349–381, DOI: https://doi.org/10.1016/0022-1236(73)90051-7.
- [22] L. Ding, L. Li, and J.-L. Zhang, Positive solutions for a nonhomogeneous Kirchhoff equation with the asymptotical nonlinearity in R3, Abstr. Appl. Anal. 2014, Art. ID 710949, 10 pp, DOI: http://dx.doi.org/10.1155/2014/710949.
- [23] J. Liu, J.-F. Liao, and C.-L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in RN , J. Math. Anal. Appl. 429 (2015), no. 2, 1153–1172, DOI: http://dx.doi.org/10.1016/j.jmaa.2015.04.066.
- [24] W. He, D. Qin, and Q. Wu, Existence, multiplicity and nonexistence results for Kirchhoff type equations, Adv. Nonlinear Anal. 10 (2021), no. 1, 616–635, DOI: https://doi.org/10.1515/anona-2020-0154.
- [25] L. Huang and J. Su, Multiple solutions for nonhomogeneous Schrödinger-Poisson system with p-Laplacian, Electron. J. Differential Equations 2023 (2023), no. 28, 1–14, DOI: https://doi.org/10.58997/ejde.2023.28.
- [26] L.-X. Huang, X.-P. Wu, and C.-L. Tang, Multiple positive solutions for nonhomogeneous Schrödinger-Poisson systems with Berestycki-Lions type conditions, Electron. J. Differential Equations 2021 (2021), no. 1, 1–14, DOI: https://doi.org/10.58997/ejde.2021.01.
- [27] D. Lü, Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity, Commun. Pure Appl. Anal. 17 (2018), no. 2, 605–626, DOI: http://dx.doi.org/10.3934/cpaa.2018033.
- [28] Q. Zhang and X. Zhu, The existence of multiple solutions for nonhomogeneous Kirchhoff type equations in R3, Abstr. Appl. Anal. (2013), 806865, 5, DOI: https://doi.org/10.1155/2013/806865.
- [29] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997), no. 10, 1633–1659, DOI: https://doi.org/10.1016/S0362-546X(96)00021-1.
- [30] M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, 1996.
- [31] L. Jeanjean and K. Tanaka, A remark on least energy solutions in RN , Proc. Amer. Math. Soc. 131 (2003), no. 8, 2399–2408, DOI: https://doi.org/10.1090/s0002-9939-02-06821-1.
- [32] J. Hirata, N. Ikoma, and K. Tanaka, Nonlinear scalar field equations in RN : mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal. 35 (2010), no. 2, 253–276, DOI: https://doi.org/10.1515/ans-2018-2039.
- [33] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), no. 2, 324–353, DOI: https://doi.org/10.1016/0022-247X(74) 90025-0.
- [34] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin, 1998.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-420ce88f-02ea-43e8-a2eb-f6a54f9adfd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.