PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of Brine Discharge on Sea Urchins, Case Study of the Bousfer Desalination Plant in West Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the potential impact of discharged water from the Bousfer desalination plant in Algeria on the marine environment, with a focus on sea urchins that we found overpopulated in the brine discharge area. To assess the presence of heavy metals, which can pose significant ecological and health risks, water samples were collected from the discharge area and analyzed using atomic absorption spectrometry (AAS). The targeted metals included iron, copper, zinc, nickel, and chromium. The results indicated extremely low concentrations of these metals, with values ranging from ≤ 0.001 to ≤ 0.01 mg/L. This research is the first of its kind at the Bousfer desalination plant and this site was chosen because this station is scheduled to be replaced by a much larger plant. This study suggests that the levels of heavy metals detected in discharged waters are insufficient to pose a direct threat to sea urchins or humans who consume them. However, given the potential for long-term and cumulative effects, further in-depth studies are needed to assess the overall environmental impact of discharged waters on marine ecosystems, including benthic fauna.
Słowa kluczowe
Twórcy
  • Laboratory of Aquaculture and Bioremediation (AQUABIOR), Department of Biotechnology, University of Oran 1 –Ahmed Ben Bella, BP 1524 El M’Naouer, Oran, 31000, Algeria
  • Laboratory of Aquaculture and Bioremediation (AQUABIOR), Department of Biotechnology, University of Oran 1 –Ahmed Ben Bella, BP 1524 El M’Naouer, Oran, 31000, Algeria
Bibliografia
  • 1. Albarano L., Zupo V., Caramiello D., Toscanesi M., Trifuoggi M., Guida M., Libralato G., Costantini M. 2021. Sub-chronic effects of slight pah- and pcbcontaminated mesocosms in paracentrotus lividus lmk: a multi-endpoint approach and de novo transcriptomic. International Journal of Molecular Sciences, 22(13), 6674. DOI: https://doi.org/10.3390/ijms22136674
  • 2. Amri S., Samar M., Sellem F. Ouali K. 2017. Seasonal antioxidant responses in the sea urchin Paracentrotus lividus (Lamarck 1816) used as a bioindicator of the environmental contamination in the South-East Mediterranean.. Marine Pollution Bulletin.
  • 3. Bessenasse M., Belkacem Filali M. 2014. Impact du dessalement sur l’environnement en Algérie. Revue Agrobiologie. N°6 : 75–81. (In French)
  • 4. Bielmyer G., Brix K., Capo, T., Grosell M. 2005. The effects of metals on embryo-larval and adult life stages of the sea urchin, diadema antillarum. Aquatic Toxicology, 74(3), 254–263. DOI: https://doi.org/10.1016/j.aquatox.2005.05.016
  • 5. Bouchoucha M., Piquet J., Chavanon F., Dufresne C., Guyader F. 2016. Faecal contamination of echinoderms: first report of heavy Escherichia coli loading of sea urchins from a natural growing area. Letters in Applied Microbiology, 62(2), 105–110. DOI : https://doi.org/10.1111/lam.12524
  • 6. Câmara J.S., Montesdeoca-Esponda S., Freitas J., Guedes-Alonso R., Sosa-Ferrera Z., Perestrelo R. 2021. Emerging contaminants in seafront zones. Environmental Impact and Analytical Approaches. Separations, 8, 95. DOI: https://doi.org/10.3390/separations8070095
  • 7. Cunha I., Torres T., Oliveira H., Martins R., McGowan T., Sheahan D., Santos, M. 2017. Using early life stages of marine animals to screen the toxicity of priority hazardous and noxious substances. Environmental Science and Pollution Research, 24(11), 10510–10518. DOI: https://doi.org/10.1007/s11356-017-8663-8
  • 8. El Idrissi O., Ternengo S., Monnier B., Lepoint G., Aiello A., Bastien R., Lourkisti R., Bonnin M., Santini J., Pasqualini V., Gobert S. 2023. Assessment of trace element contamination and effects on paracentrotus lividus using several approaches: pollution indices, accumulation factors and biochemical tools. Science of the total Environment. 869, 161 686.
  • 9. Johansson C.L., Bellwood D.R. and Depczynski M. 2010. Marine Ecology Progress Series. 414, 65–74.
  • 10. Kassouar S., Attab K., Dergal N., AbiAyad S. 2024. Consequences of brine discharge desalination on the marine ecosystem, case study of the Kahrama station in the North West of Algeria. Applied Ecology And Environmental Research. 22(2), 1281–1295.
  • 11. Lior N. 2017. Sustainability as the quantitative norm for water desalination impacts. Desalination 401, 99–111.
  • 12. Mehtougui M.S., Kerfouf A., Mehtougui F., Ardjoun S., Benyahia M. 2013. Impacts du dessalement d’eau de mer sur les écosystèmes littoraux : cas de deux unités de l’ouest Algérien. European journal of scientific reaserch, 96, 245–249. (In French)
  • 13. Morroni L., Rakaj A., Grosso L., Flori G., Fianchini A., Pellegrini D., Regoli F. 2023. Echinoderm larvae as bioindicators for the assessment of marine pollution: Sea urchin and sea cucumber responsiveness and future perspectives.. Environmental Pollution.
  • 14. Nikolaou A., Tsirintanis K., Rilov G., Katsanevakis S. 2023. Invasive fish and sea urchins drive the status of canopy forming macroalgae in the eastern mediterranean. Biology, 12, 763.
  • 15. Parra-Luna M., Martín-Pozo L., Hidalgo F., ZafraGómez A. 2020. Common sea urchin (Paracentrotus lividus) and sea cucumber of the genus Holothuria as bioindicators of pollution in the study of chemical contaminants in aquatic media. A revision. Ecological Indicators.
  • 16. Pulido-Bosch A., Vllejos A., Sola F. 2019. Methods to supply seawater to desalination plants along the Spanish Mediterranean coast and their associated issues. Envirnmental Earth Sciences. 78(10), 322.
  • 17. Rodier J., 2010. Analyse de l’eau naturelle, eau de mer et eau industrielle. Edition Dunod, 984 p.
  • 18. Rouchon A., Phillips N. 2017. Acute toxicity of copper, lead, zinc and their mixtures on the sea urchin Evechinus chloroticus. New Zealand Journal of Marine and Freshwater Research.
  • 19. Savoca D., Melfi R., Piccionello A., Barreca S., Buscemi S., Arizza V., Arculeo M., Pace A. 2021. Presence and biodistribution of perfluorooctanoic acid (pfoa) in paracentrotus lividus highlight its potential application for environmental biomonitoring. Scientific Reports, 11(1). DOI: https://doi.org/10.1038/s41598-021-98284-2
  • 20. Stabili L., Pagliara P. 2015 The sea urchin Paracentrotus lividus immunological response to chemical pollution exposure: The case of lindane.. Chemosphere.
  • 21. Ternengo S., Marengo M., Idrissi O., Yepka J., Pasqualini V., Gobert S. 2018. Spatial variations in trace element concentrations of the sea urchin, paracentrotus lividus, a first reference study in the mediterranean sea. Marine Pollution Bulletin, 129(1), 293–298. DOI: https://doi.org/10.1016/j.marpolbul.2018.02.049
  • 22. Wallner-Hahn S., de la Torre-Castro M., Eklöf J.S., Gullström M., Muthiga N.A., Uku J. 2015. Cascade effects and sea-urchin overgrazing: An analysis of drivers behind the exploitation of sea urchin predators for management improvement. Ocean & Coastal Management, 107, 16–27.
  • 23. Wen-xiong W. 2023. Environmental toxicology of marine microplastic pollution.. Cambridge Prisms: Plastics, 1, e10, 1–15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4207d899-314e-425a-b94f-1470ce58517d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.