PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To find the steady flow water surface profile, it is possible to use Bernoulli’s equation, which is a discrete form of the differential energy equation. Such an approach requires the average energy slope between cross-sections to be estimated. In the literature, many methods are proposed for estimating the average energy slope in this case, such as the arithmetic mean, resulting in the standard step method, the harmonic mean and the geometric mean. Also hydraulic averaging by means of conveyance is commonly used. In this study, water surface profiles numerically computed using different formulas for expressing the average slope were compared with exact analytical solutions of the differential energy equation. Maximum relative and mean square errors between numerical and analytical solutions were used as measures of the quality of numerical models. Experiments showed that all methods gave solutions useful for practical engineering purposes. For every method, the numerical solution was very close to the analytical one. However, from the numerical viewpoint, the differences between the methods were significant, as the errors differed up to two orders of magnitude.
Rocznik
Strony
89–--109
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • Ascher U. M., Petzold L. R. (1998) Computer methods for Ordinary Differential Equations and Difference-Algebraic Equations, SIAM, Philadelphia.
  • ArtichowiczW., Szymkiewicz R. (2014) Computational issues of solving the 1D steady gradually varied flow equation, J. Hydrol. Hydromech., 62 (3), 226–233. DOI: 10.2478/johh-2014-0031.
  • Chanson H. (2004) The hydraulics of open channel flow: an introduction. Second Edition. Elsevier.
  • Chadderton R. A., Miller A. C. (1980) Friction models for M2 profiles, JAWRA Journal of the American Water Resources Association, 16 (2), 235–242, DOI: 10.1111/j.1752-1688.1980.tb02384.x.
  • Cunge J. A., Holly F. M., Verwey A. (1979) Practical aspects of computational river hydraulics, Pitman advanced publishing program, Boston, London, Melbourne.
  • French R. H. (1985) Open Channel Hydraulics, McGraw-Hill, New York.
  • Hairer E., Lubich C., Wanner G. (2005) Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Second Edition. Springer, Berlin, Heidelberg, New York.
  • Kincaid D., Cheney W. (2006) Numerical Analysis: Mathematics of Scientific Computing (Polish edition). Wydawnictwa Naukowo-Techniczne, Warszawa.
  • Laurenson E. M. (1986) Friction Slope Averaging in Backwater Calculations, J. Hydraul. Eng., 112 (12), 1151–1163.
  • MacDonald I., Baines M. J., Nichols N. K., Samuels P. G. (1997) Analytic Benchmark Solutions for Open-Channel Flows, J. Hydraul. Eng., 123 (11), 1041–1045.
  • Szymkiewicz R. (2010) Numerical modeling in open channel hydraulics, Springer.
  • US Army Corps of Engineers (2010) HEC-RAS hydraulic reference.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4205da02-c283-4891-9729-f5fa25b17151
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.