PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the interval Lattice Boltzmann method for a numerical modeling of 2D thin metal films irradiated by ultrashort laser pulses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the two-dimensional numerical modelling of heat transfer in thin metal films irradiated by ultrashort laser pulses using the D2Q9 scheme is considered. In the mathematical description, the relaxation times and the boundary conditions for phonons and electrons are given as interval numbers. The problem has been formulated using the interval coupled lattice Boltzmann equations for electrons and phonons. The solution has been obtained by means of the interval lattice Boltzmann method using the rules of directed interval arithmetic. Examples of numerical computations are presented in the final part of the paper.
Rocznik
Strony
63--71
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Department of Computational Mechanics and Engineering Silesian University of Technology, Gliwice, Poland
autor
  • Department of Computational Mechanics and Engineering Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] Eshraghi, M., & Felicelli, S.D. (2012). An implicit lattice Boltzmann model for heat conduction with chase chandler. Int. J. of Heat and Mass Transfer, 55, 2420-2428.
  • [2] Escobar, R.A., & Amon, C.H. (2008). Thin film phonon heat conduction by the dispersion lattice Boltzmann method. J. Heat Transfer, 130(9), 092402, 1-8.
  • [3] McNamara, G.R., & Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett., 61(20), 2332-2335.
  • [4] Higuera, F., Succi, S., & Benzi, R. (1989). Lattice gas dynamics with enhanced collisions. Europhys. Let., 9(4), 345-349.
  • [5] Benzi, R., Succi, S., & Vergassola, M. (1992). The lattice Boltzmann equation: theory and applications. Phys. Rep., 222(3), 145-197.
  • [6] Piasecka-Belkhayat, A. (2008). Interval boundary element method for 2D transient diffusion problem. Engineering Analysis with Boundary Elements, 32(5), 424-430.
  • [7] Chen, J.K., Tzou, D.Y., & Beraun, J.E. (2006). A semiclassical two-temperature model for ultrafast laser heating. Int. J. of Heat and Mass Transfer, 49, 307-316.
  • [8] Joshi, A.A., & Majumdar, A. (1993). Transient ballistic and diffusive phonon heat transport in thin films. J. of Appl. Physics, 74(1), 31-39.
  • [9] Zhang, Z.M. (2007). Nano/Microscale Heat Transfer. New York: McGraw-Hill.
  • [10] Tzou, D.Y. (2015). Macro- to Microscale Heat Transfer. The Lagging Behavior. New York: John Wiley&Sons Ltd.
  • [11] Majchrzak, E., Mochnacki, B., & Suchy J.S. (2009). Numerical simulation of thermal processes proceeding in a multi-layered film subjected to ultrafast laser heating. Journal of Theoretical and Applied Mechanics, 47, 2, 383-396.
  • [12] Deng, Y., Jiang, D., & Liang, D. (2017). High-order finite difference method for a second order dual-phase-lagging models of microscale heat transfer. Applied Mathematics and Computations, 309, 31-48.
  • [13] Mochnacki, B., & Paruch, M. (2013). Estimation of relaxation and thermalization time in microscale heat transfer model. J. of Theoretical and Applied Mechanics, 51, 4, 837-845.
  • [14] Al-Nimr, M.A. (1997). Heat transfer mechanisms during short duration laser heating of thin metal films. Int. J. Thermophys., 18, 5, 1257-1268.
  • [15] Lin, Z., & Zhigilei, L.V. (2008). Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B, 77, 075133-1-075133-17
  • [16] Majchrzak, E., & Dziatkiewicz, J. (2015). Analysis of ultashort laser pulse interactions with metal films using a two-temperature model. J. of Applied Mathematics and Computational Mechanics, 14(2), 31-39.
  • [17] Majchrzak, E., Mochnacki, B., Greer, A.L., & Suchy, J.S. (2009). Numerical modeling of short pulse laser interactions with Engineering and Sciences, 41, 2, 131-146.
  • [18] Lee, J.B., Kang, K., & Lee, S.H. (2011). Comparison of theoretical models of electron-phonon coupling in thin gold films irradiated by femtosecond pulse lasers. Materials Transactions, 52(3), 547-553.
  • [19] Jasiński, M. (2015). Modelling of thermal damage in laser irradiated tissue. J. Appl. Math. Comput. Mech., 14, 67-78.
  • [20] Piasecka-Belkhayat, A. (2011). Interval boundary element method for imprecisely defined unsteady heat transfer problems. (in Polish), Monograph (321). Gliwice: Publ. of the Silesian University of Technology.
  • [21] Markov, S.M. (1995). On directed interval arithmetic and its applications. J. of Universal Comp. Science, 1, 514-526.
  • [22] Borovsky, A.V., Galkin, A.L., Shiryaev, O.B., & Auguste, T. (2003). Laser Physics at Relativistic Intensities. Berlin: Springer.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41ffe8f0-dbaa-4bdf-bf40-b01c482dba35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.