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Abstract. In the paper, the two-dimensional numerical modelling of heat transfer in thin 

metal films irradiated by ultrashort laser pulses using the D2Q9 scheme is considered.  

In the mathematical description, the relaxation times and the boundary conditions for  

phonons and electrons are given as interval numbers. The problem has been formulated  

using the interval coupled lattice Boltzmann equations for electrons and phonons. The solu-

tion has been obtained by means of the interval lattice Boltzmann method using the rules of 

directed interval arithmetic. Examples of numerical computations are presented in the final 

part of the paper. 
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1. Introduction 

In metals, the heat transport is mainly realized by two kinds of heat carriers: 

electrons and phonons [1]. The electrons have higher velocities than phonons and 

by this way free electron mechanism of heat transport is much more efficient than 

the phonon one. Electrons and phonons always “move” from the part with the 

higher temperature to the part with the lower temperature and during this process 

electrons and phonons carry energy. This kind of phenomena can be described by 

the Boltzmann transport equation (BTE) [2-5]. The lattice Boltzmann method 

(LBM) is used to solve a discretized set of the Boltzmann transport equations [6]. 

In the paper, the coupled lattice Boltzmann equations for electrons and phonons 

have been assumed. The coupled model contains two energy equations determining 

the heat exchange in the electron gas and the metal lattice [7, 8]. In general, for 

two-dimensional problems, D2Q4, D2Q5 and D2Q9 models are the models most 

common in the literature. In this paper the authors take into account D2Q9 model. 
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Other approaches to the modeling of the microscale heat transfer are also used. Here, 

the different variants of the dual phase lag model e.g. [9-13] or the two-temperature 

parabolic or hyperbolic models e.g. [14-16] can be mentioned. It should be pointed 

out that in the case of metals and, under certain simplifications, the two-temperature 

parabolic model can be transformed to the dual phase one [17]. 

The heat transfer problems are usually solved using equations with deterministic 

parameters [1]. However, in most cases of the engineering practice, the values of 

these parameters cannot be defined with a high precision, and in such cases it is much 

more convenient to define these parameters as intervals numbers [7]. In the paper 

the interval values of relaxation times and the boundary conditions for electrons 

and phonons are taken into account. The relaxation times are estimated experimen-

tally and their actual values are still a subject of discussion [18].  

In the article, the authors present an innovative approach of the described prob-

lem using the interval lattice Boltzmann method with the approach of the directed 

interval arithmetic. In this arithmetic, two binary variables are defined: the direc-

tion variable and the sign variable. The set of all directed interval numbers can be 

defined as the sum of two sets: proper intervals and improper intervals, where the 

beginning of the interval is less than the end of the interval [19]. The main advan-

tage of the directed interval arithmetic upon the usual interval arithmetic is that the 

obtained temperature intervals are much narrower and their width does not increase 

in time. 

In theory, as well as in practice, it is valuable to develop the interval version of 

the LBM.  

2. The Boltzmann transport equation 

During the heating of thin metal films via laser pulse the electrons are energized 

and they subsequently transfer the energy to phonons via coupling between them. 

The Boltzmann transport equations for the coupled model (2D problem) with two 

kinds of carriers: electrons (e) and phonons (ph) transformed into carrier energy 

density equations take the following form [2] 
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where ,e phe e  are the carrier energy densities, 
0 0,e phe e  are the equilibrium carrier 

energy densities and ,e phQ Q  are the carrier energy sources related to a unit of  

volume. The equations (1) and (2) must be supplemented by the adequate boundary- 

-initial conditions. 
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The electron and phonon energy densities at their equivalent nonequilibrium 

temperatures are given by the formulas 
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where ,e phT T  are the carrier temperatures, kb is the Boltzmann constant, F  is the 

Fermi energy, en  is the electron density, ΘD is the Debye temperature of the solid, 

  is the number density of oscillators [2]. 

The electron and phonon energy sources are calculated using the following  

expressions [2] 

 ( )  e e phQ Q G T T  (5) 

 ( ) ph e phQ G T T  (6) 

where Q  is the power density deposited by the external source function associated 

with the laser irradiation [18] and G is the electron-phonon coupling factor which 

characterizes the energy exchange between electrons and phonons. The temporal 

variation of the laser output pulse is treated as a source term in the energy equation 

and may be approximated by a form of exponential function [19]  
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where I0 is the peak power intensity of the laser pulse, δ  is the absorption coeffi-

cient, β  is the laser pulse parameter, r is the radius of the laser beam, x and y are 

the coordinates. The laser parameter β  determines the laser pulse shape. Its value is 

in the range of 
13(0.5 1) 10   1/s. 

3. The interval lattice Boltzmann method 

The interval Boltzmann transport equations for the coupled model with two 
kinds of carriers (e-electrons and ph-phonons) can be written using the following 

formulas [2, 20, 21]  
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where ,e phe e  are the interval energy densities, 
0 0,e phe e  are the equilibrium interval 

energy densities, [ , ], [ , ] e ex ey ph phx phyv v v vv v  are the frequency-dependent prop- 

agation speed, , r e r ph  are the interval relaxation times, t denotes the time and 

,e phQ Q  are the interval energy sources related to a unit of volume for electrons 

and phonons respectively. For a two-dimensional 9-speed (D2Q9) model, the dis- 

crete carrier velocities   d e phv v v  are expressed as [13] 
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where / /     c x t y t  is the carriers speed,  x  and  y  are the lattice dis- 

tances from site to site, 1  f ft t t  is the time step needed for an electron or  

a phonon to travel from one lattice site to the neighboring lattice site and d is  

the direction. For a 2D, model the discrete set of electron and phonon propagation  
velocities (10) in nine lattice directions might be also defined as (see Fig. 1) 
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Fig. 1. Two-dimensional 9-speed lattice Boltzmann model (D2Q9) 
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and the initial conditions 
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where 3
e
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bT  are the interval values of boundary temperatures of electrons 

and phonons respectively,  
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temperatures of phonons on the top of the domain considered, 0
eT  is the electron’s 

initial temperature and 0
phT  is the phonon’s initial temperature. 

Taking into account formulas (10) and (11), a set of eighteen interval partial differ-

ential equations is obtained. Introducing discretizing form, time and position deriv- 

atives may be written as follows 
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4. Results of computation 

In the final part of the paper the results of numerical computations are shown.  
 

As a numerical example, the heat transport in a gold thin film of the dimensions  
 

1000 nm  200 nm has been analysed. To the modelling internal heat source were  
 

used parameters of the KrF laser: the wavelength of  = 248 nm and the radius of  
 

the laser beam r = 42 nm [22]. The following input data have been introduced:  
 

the relaxation time  0.038, 0.042 ps re ,  0.76, 0.84 ps rph , the Debye tempe- 

rature 170 K D , the peak power intensity of the laser pulse I0 = 2·1013 W/m2, the 

absorption coefficient 77.55 10   1/m, the laser pulse parameter 130.5 10   1/s, 

the coupling factor G = 2.3·1016 W/m3K, the boundary conditions of the 1st type  

on the bottom boundary with the interval temperature 3 3 [285, 315] K e ph
b bT T   

and the 2nd type on the other boundaries (where ‘k’ means electron or phonon) 

1 2 1 4 2(0, , ) ( , , ) ( , , ) 0  k k k
b b bq y t q L y t q x L t , the the initial temperature 0 300 KT . 

The lattice step 20 nm x  and the time step 0.01 ps t  have been assumed. 
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Fig. 2. The interval temperature distributions in gold film after 60 ps  

for chosen nodes 

Figure 2 illustrates the interval temperature distributions of electrons for interval 

parameters calculated for the nodes: (140, 60) - 1, (140, 100) - 2, (140,140) - 3. 

Figure 4 presents the interval temperature distributions of electrons for chosen 

times in the analysed domain (see Fig. 3). 
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Fig. 3. Laser irradiation 
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Fig. 4. The interval temperature distributions in gold film for chosen times 

5. Conclusions 

In the paper, the coupled lattice Boltzmann equations for electrons and phonons 
are applied to analyse the heating process of the thin metal films via laser pulse. 

The Boltzmann transport equations with the interval values of the relaxation times 
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and the boundary conditions have been considered. The interval version of the  

lattice Boltzmann method for solving 2D problems has been presented using  
the rules of directed interval arithmetic. The generalization of LBM allows one to 

find the numerical solution in the interval form and such information may be  
important especially for the parameters that are estimated experimentally, for  
example the relaxation times.  
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