PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three dimensional finite element analysis of a novel osteointegrated dental implant designed to reduce stress peak of cortical bone

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new type of dental implant was designed as multi-component mainly including inset and abutment between which a gap was introduced to guide the force to transmit from the cancellous bone to cortical bone, with the intention to lower the stress peak at cortical bone. By the way of finite element analysis (FEA) associated with advanced computer tomography (CT) and 3D model reconstruction technology to construct precise mandible model, biomechanical aspects of implant were investigated. Compared with traditional implant that created stress dominantly at cortical bone, stress peak at the implant/bone interface in the cervical cortex decreased sharply (about 51%) for new type of implant. Furthermore, varying implant shape and gap dimensions to optimize the design of this new implant was performed. Optimization results revealed that: 1) screwed cylindrical implant is superior to tapered, stepped and smooth cylindrical implant in effectively decreasing the stress peak of bone; 2) deepening and widening gap would contribute to the decline of stress peak, but at the cost of break and destruction of the inset; 3) suitable gap size with the depth of 7mm and width of 0.3mm would be applicable. This work may provide reference forclinical application of dental implant.
Rocznik
Strony
21--28
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • The Medical and Scientific Research Center of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
autor
  • The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
autor
  • The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
autor
  • National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
Bibliografia
  • [1] SUVA L.J., GADDY D., PERRIEN D.S., THOMAS R.L., FINDLAY D.M., Regulation of bone mass by mechanical loading: microarchitecture and genetics, Curr. Osteoporos. Rep., 2005, 3, 46–51.
  • [2] SCHOENAU E., From mechanostat theory to development of the “Functional Muscle-Bone-Unit”, J. Musculoskelet. Neuronal Interact., 2005, 5, 232–238.
  • [3] KUSZ D., WOJCIECHOWSKI P., CIELINSKI L.S., IWANIAK A., JURKOJC J., GASIOREK D., Stress distribution around a TKR implant: are lab results consistent with observational studies? Acta Bioeng. Biomech., 2008, 10, 21–26.
  • [4] SEVIMAY M., TURHAN F., KILICARSLAN M.A., ESKITASCIOGLU G., Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implantsupported crown, J. Prosthet. Dent., 2005, 93, 227–234.
  • [5] DING X., ZHU X.H., LIAO S.H., ZHANG X.H., CHEN H., Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis, J. Prosthodont., 2009, 18, 393–402.
  • [6] HANSSON S., WERKE M., The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study, J. Biomech., 2003, 36, 1247–1258.
  • [7] MEIJER H.J., KUIPER J.H., STARMANS F.J., BOSMAN F., Stress distribution around dental implants: influence of superstructure, length of implants, and height of mandible, J. Prosthet. Dent., 1992, 68, 96–102.
  • [8] PIERRISNARD L., RENOUARD F., RENAULT P., BARQUINS M., Influence of implant length and bicortical anchorage on implant stress distribution, Clin. Implant Dent. Relat. Res., 2003, 5, 254–262.
  • [9] HIMMLOVÁ L., DOSTÁLOVÁ T., KÁCOVSKÝ A., KONVICKOVÁ S., Influence of implant length and diameter on stress distribution: a finite element analysis, J. Prosthet. Dent., 2004, 91, 20–25.
  • [10] BAGGI L., CAPPELLONI I., DI GIROLAMO M., MACERI F., VAIRO G., The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis, J. Prosthet. Dent., 2008, 100, 422–431.
  • [11] SHIN Y.K., HAN C.H., HEO S.J., KIM S., CHUN H.J., Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year, Int. J. Oral. Maxillofac. Implants, 2006, 21, 789–794.
  • [12] WANG X.J., WANG R.W., LUO J.Y., ZHANG X.D., Preliminary evaluation of a new dental implant design with finite element analysis, Key Eng. Biomater., 2005, 288–289, 657–660.
  • [13] RUBO J.H., SOUZA E.A., Finite element analysis of stress in bone adjacent to dental implants, J. Oral. Implantol., 2008, 34, 248–255.
  • [14] LIMBERT G., VAN LIERDE C., MURARU O.L., WALBOOMERS X.F., FRANK M., HANSSON S., MIDDLETON J., JAECQUES S., Trabecular bone strains around a dental implant and associated micromotions–a micro-CT-based three-dimensional finite element study, J. Biomech., 2010, 43, 1251–61.
  • [15] LIN D., LI Q., LI W., DUCKMANTON N., SWAIN M., Mandibular bone remodeling induced by dental implant, J. Biomech., 2010, 43, 287–293.
  • [16] IPLIKÇIOĞLU H., AKÇA K., Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone, J. Dent. 2002, 30, 41–46.
  • [17] CRAIG R.G., Restorative Dental Materials, ed. 6. St. Louis, CV Mosby Co., 1980.
  • [18] OZEN M., SAYMAN O., HAVITCIOGLU H., Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex, Acta Bioeng. Biomech., 2013, 15, 19–27.
  • [19] TSUTSUMI S., FUKUDA S., TANI Y., Biomechanical designing of implants, J. Dent. Res., 1989, 68, 766–774.
  • [20] SIEGELE D., SOLTESZ U., Numerical investigations of the influence of implant shape on stress distribution in the jaw bone, Int. J. Oral. Maxillofac. Implants, 1989, 4, 333–340.
  • [21] PETRIE C.S., WILLIAMS J.L., Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis, Clin. Oral. Implants Res., 2005, 16, 486–494.
  • [22] TADA S., STEGAROIU R., KITAMURA E., MIYAKAWA O., KUSAKARI H., Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis, Int. J. Oral. Maxillofac. Implants, 2003, 18, 357–368.
  • [23] CHUN H.J., CHEONG S.Y., HAN J.H. et al., Evaluation of design parameters of osseointegrated dental implants using finite element analysis, J. Oral. Rehabil., 2002, 29, 565–574
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41fe26a5-39f9-49e4-92e2-82e32b61937d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.