Identyfikatory
Warianty tytułu
Black holes interactions
Języki publikacji
Abstrakty
Końcowym stadium niepohamowanego kolapsu grawitacyjnego jest pojedynczy obiekt zwany czarną dziurą. Czy czarne dziury zawsze mają taką samą uniwersalną postać? Chociaż twierdzenie o jednoznaczności czarnych dziur udziela pozytywnej odpowiedzi na to pytanie, to każde twierdzenie jest tylko tak silne, jak jego założenia. Przez wiele lat fizycy nie potrafili wykluczyć istnienia stacjonarnych konfiguracji dwóch czarnych dziur, które mogłyby wspólnie tworzyć bardziej złożony obiekt. Obecnie znamy rozwiązanie tego problemu.
The final stage of an unrestrained gravitational collapse is a single object known as a black hole. Do black holes always have the same universal form? Although the uniqueness theorem provides a positive answer to this question, every theorem is only as strong as its assumptions. For many years physicists were unable to exclude the existence of stationary configurations of two black holes that could form together a more complex object. Currently, we know the solution to this problem.
Wydawca
Czasopismo
Rocznik
Tom
Strony
15--23
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
- Zakład Kosmologii i Astrofizyki Relatywistycznej, Obserwatorium Astronomiczne UJ
Bibliografia
- [1] LIGO Scientific Collaboration and Virgo Collaboration, „Observation of Gravitational Waves from a Binary Black Hole Merger”, Physical Review Letters, 116 (6): 061102 (2016).
- [2] The Event Horizon Telescope Collaboration, „First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole”, The Astrophysical Journal Letters. 875 (1): L1 (2019).
- [3] Szybka S. J., „On gravitational interactions between two bodies” w: Mathematical Structures of the Universe, red. M. Eckstein, M. Heller, S.J. Szybka, CCPress, 2014, 137-151.
- [4] Liu F. K., „X-shaped radio galaxies as observational evidence for the interaction of supermassive binary black holes and accretion disc at parsec scale”, Monthly Notices of the Royal Astronomical Society, 347, 4:1357–1369 (2004).
- [5] Deane R. P. , Paragi Z., Jarvis M. J. , Coriat M., Bernardi G., Fender R. P. ,Frey S., Heywood I., Klöckner H.-R., Grainge K., Rumsey C., „A close-pair binary in a distant triple supermassive black hole system”, Nature, 511, 57 (2014).
- [6] Celotti A., Miller J. C., Sciama D. W., „Astrophysical evidence for the existence of black holes”, Classical Quantum Gravity, 16, A3-A21 (1999).
- [7] Schwarzschild K., „Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 7:189–196 (1916).
- [8] Lemaitre G., „L’Univers en expansion”, Annales de la Société Scientifique de Bruxelles, A53: 51–85 (1933).
- [9] Oppenheimer J. R., Snyder H., „On continued gravitational contraction”, Physical Review, 56, 455 (1939).
- [10] Chandrasekhar S., „The highly collapsed configurations of a stellar mass”, Monthly Notices of the Royal Astronomical Society, 91, 456–466 (1931).
- [11] Einstein A., „On a stationary system with spherical symmetry consisting of many gravitating masses”, The Annals of Mathematics, 40, 4:922—936 (1939).
- [12] Kruskal M. D., „Maximal extension of Schwarzschild metric”, Physical Review, 119:1743–1745 (1960).
- [13] Kerr R., „Gravitational field of a spinning mass as an example of algebraically special metrics”, Physical Review Letters, 11, 237 (1963).
- [14] Penrose R., „Gravitational collapse and space-time singularities”, Physical Review Letters 14, 57 (1965).
- [15] Chruściel P. T., Costa J. L., Heusler M. , „Stationary black holes: uniqueness and beyond”, Living Reviews in Relativity 15 (7) (2012).
- [16] Chandrasekhar S., „Shakespeare, Newton, and Beethoven, or Patterns of Creativity: The Nora and Edward Ryerson Lecture”, University of Chicago Record (1975)
- [17] Elvang H., Figueras P., „Black saturn”, Journal of High Energy Physics 05(2007):050
- [18] Newton I., Philosophiae Naturalis Principia Mathematica (1687); 1. wyd. polskie: tłum. Wawrzycki J., Matematyczne zasady filozofii przyrody, Copernicus Center Press, 2011.
- [19] Heaviside O., „A gravitational and electromagnetic analogy”, The Electrician, 31, 281 (1893).
- [20] Heaviside O., „A gravitational and electromagnetic analogy”, The Electrician, 31, 359 (1893).
- [21] Everitt C. W. F., DeBra D. B., Parkinson B. W.,Turneaure J. P., Conklin J. W., Heifetz M. I., Keiser G. M., Silbergleit A. S., Holmes T., Kolodziejczak J., Al-Meshari M., Mester J.C., Muhlfelder B., Solomonik V. G., Stahl K.,Worden P. W., Bencze W., Buchman S., Clarke B., Al-Jadaan A., Al-Jibreen H., Li J., Lipa J. A., Lockhart J. M., Al-Suwaidan B., Taber M., Wang S., „Gravity Probe B: final results of a space experiment to test general relativity”, Physical Review Letters 106:221101 (2011).
- [22] Thorne K. S., „Gravitomagnetism, Jets in Quasars, and the Standford Gyroskope Experiment”, w: Near Zero: New Frontiers of Physics, red. Fairbank J. D., Deaver B. S., Everitt C. W. F., Michelson P. F., W. H. Freeman and Company (1988), s. 573—586
- [23] Mathisson M., „Neue Mechanik materieller Systeme”, Acta Physica Polonica 6, 163 (1937).
- [24] Średniawa B., „Relativistic equations of motion of ‘spin particles”’, w: Cosmology and Gravitation, red. Bergmann P. G., De Sabbata V. ., tom 56 NATO Advanced Study Institute Series, Springer, 1980, s. 423.
- [25] Średniawa B., „Myron Mathisson’s and Jan Weyssenhoff ’s work on the problem of motion in General Relativity”, w: Studies in the History of General Relativity, red. Eisenstaed J., Kox A. J., tom 3 Einstein Studies, Birhäuser, 1992, s. 400-406.
- [26] Mathisson M., „Republication of: New mechanics of material systems”, General Relativity and Gravitation, 42(4):1011—1048 (2010).
- [27] Papapetrou A., „Spinning test-particles in General Relativity”, I. Royal Society of London Proceedings. Series A 209:248—258 (1951).
- [28] Wald R., „Gravitational spin interactions”, Physical Review D 6:406—413 (1972)
- [29] Hawking S., „Gravitational radiation from colliding black holes”, Physical Review Letters 26:1344—1346 (1971).
- [30] Hawking S., „Black holes in General Relativity”, Communications in Mathematical Physics 25(2):152—166 (1972).
- [31] Weyl H., „3. Zur Gravitationstheorie”, Annalen der Physik 54:117—145 (1917).
- [32] Weyl H., „5. Bemerkung über die axialsymmetrischen Lösungen der Einsteinschen Gravitationsgleichungen”, Annalen der Physik 59:185—188 (1919).
- [33] Bach R., Weyl H., „Neue Lösungen der Einsteinschen Gravitationsgleichungen. B. Explicite Aufstellung statischer axialsymmetrischer Felder. Mit einem Zusatz über das statische Zweikörperproblem von H. Weyl”, Mathematische Zeitschrift 13:134—145 (1922).
- [34] Weyl H., „Republication of: 3. On the theory of gravitation”, General Relativity and Gravitation 44(3):779—810 (2012).
- [35] Weyl H. „Republication of: 5. Comment on the axially symmetric solutions to Einstein’s equations of gravitation”, General Relativity and Gravitation 44(3):811—815 (2012).
- [36] Bach R., Weyl H., „Republication of: New solutions to Einstein’s equations of gravitation. B. Explicit determination of static, axially symmetric fields. By Rudolf Bach. With a supplement on the static two-body problem. By H. Weyl”, General Relativity and Gravitation 44:817–832 (2012).
- [37] Kramer D., Neugebauer G., „The superposition of two Kerr solutions”, Physical Letters A 75:259—261 (1980).
- [38] Neugebauer G., Hennig J., „Stationary two-black-hole configurations: a non-existence proof ”, Journal of Geometry and Physics 62:613—630 (2012).
- [39] Neugebauer G., Hennig J., „Non-existence of stationary two-black-hole configurations”, General Relativity and Gravitation 41:2113-2130 (2009).
- [40] Hennig J., Ansorg M., Cederbaum C., „A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter”, Classical and Quantum Gravity 25(16):162002 (2008).
- [41] Hennig J., Neugebauer G., „Non-existence of stationary two-black-hole configurations: the degenerate case”, General Relativity and Gravitation 43:3139—3162 (2011).
- [42] Dain S., Reiris M., „Area-angular-momentum inequality for axisymmetric black holes”, Physical Review Letters 107(5):051101 (2011).
- [43] Chruściel P. T., Eckstein M., Nguyen L., Szybka S. J., „Existence of singularities in two-Kerr black holes”, Classical and Quantum Gravity 28(24):245017 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41fdf8f3-d45a-49cd-bbb0-f3d7bbf11445