Identyfikatory
Warianty tytułu
Projekt anteny bazującej na spiralnych pierścieniach do zastosowań medycznych – implantów kości
Języki publikacji
Abstrakty
In this paper, a patch antenna based on spiral split rings is proposed for bone implants in the 401-406 MHz Medical Device Radiocommunications Service (MedRadio) and 433-434 MHz Industrial, Scientific and Medical (ISM) bands. The antenna is small of only 7 mm in radius and 3 mm in thickness. It has obtained maximum gains of -36.8 and -35.6 dBi at 403 and 433 MHz, respectively in a simplified multilayer leg model. The antenna has a robust performance that is verified in simplified leg models of an adult and a child. It can communicate over a distance of longer than 12 m in an indoor environment. The antenna proposed in this paper is probably the smallest reported bone implantable antenna that works for the 401-406 MedRadio and 433-434 MHz ISM bands. The effect of the structure parameters on the antenna performance is investigated which provides guidelines for other designs inspired by such a structure.
W artykule zaprezentowano projekt anteny bazującej na spralnych pierścieniach. Antenę zaprojektowaniu do umieszczenia w implantach kości i możliwości zastosowania w zakresie 401-406 MHz (zakres do zastosowań medycznych) lub 433-434 MHz. Średnica anteny nie przekracza 7 mm a grubość 3 mm.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
129--134
Opis fizyczny
Bibliogr. 39., rys., tab.
Twórcy
autor
- Department of Electrical Engineering, Mutah University, Alkarak-Jordan
Bibliografia
- [1] Ahmed A., Ur-Rehman M. and Abbasi Q. H., Miniature Implantable Antenna Design for Blood Glucose Monitoring, 2018 International Applied Computational Electromagnetics Society Symposium (ACES), Denver, CO, 2018, 1-2.
- [2] Lakshmi P. S., Swetha D. and Jyothirmai P. S., Non-Invasive Measurement of Stress Levels in Knee Implants, International Journal of Applied Engineering Research, 14 (2019), No. 1, 308-312.
- [3] Aleef T. A. and Biswas A., Design and Measurement of a Flexible Implantable Stripline-Fed Slot Antenna for Biomedical Applications, 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, 2016, 1-5.
- [4] Alrawashdeh R., Huang Y and Sajak A. A. B., A Flexible Loop Antenna for Biomedical Bone Implants, The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, 2014, 861-864.
- [5] Merli. F, Implantable Antennas for Biomedical Applications, Ph.D. dissertation, EPFL University, Lausanne, Switzerland, 2011.
- [6] Electromagnetic compatibility and Radio Spectrum Matters (ERM); Short Range Devices (SRD); Ultra Low Power Active Medical Implants (ULP-AMI) and Peripherals (ULP-AMI-P) operating in the frequency range 402 MHz to 405 MHz; Part 1 and Part 2, European Telecommunications Standards Institute (ETSI) Std. EN 301 839-1/2 V1.3.1, 2007. [Online]. Available: www.etsi.org
- [7] Electromagnetic compatibility and Radio Spectrum Matters (ERM); Short Range Devices (SRD); Ultra Low Power Active Medical Implants (ULP-AMI) and Peripherals (ULP-AMI-P) operating in the frequency range 401 MHz to 402 MHz and 405 MHz to 406 MHz; Part 1, European Telecommunications Standards Institute (ETSI) Std. EN 302 537-1 V1.3.1, 2007. [Online]. Available: www.etsi.org
- [8] IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1-1999, 1999.
- [9] IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1-2005, 2005.
- [10] Nikita K. S., Handbook of Biomedical Telemetry, Hoboken, New Jersey: John Wiley & Sons, 2014.
- [11] Loktongbam P., and Laishram R., Performance and Design Analysis of an Implantable Antenna for Biotelemetry, International Journal of Scientific and Research Publications, 7 (2017), No. 6, 105-114.
- [12] Liu C., Guo Y-X. and Xiao S., A Review of Implantable Antennas for Wireless Biomedical Devices, Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), 2015, 1-11.
- [13] Usman M., Alsaif H., M. Chughtai M., Asif S., Design of Compact Ultra-Wideband Monopole Semi-Circular Patch Antenna for 5G wireless communication networks, Przeglad Elektrotechniczny, 2019, No. 4, 223-226.
- [14] Miozzi C., Saggio G., Gruppioni E. and Marrocco G., Performance Comparison of Patch and Loop Antennas for the Wireless Power Transfer and Transcutaneous Telemetry in the 860–960 MHz Frequency Band, 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Chicago, IL, USA, 2019, 1-4.
- [15] Mokhtar M., et al., Implantable Patch Antenna for Body Communication, 2018 2nd International Conference on Telematics and Future Generation Networks (TAFGEN), Kuching, 2018, 77-80.
- [16] Fan Y., Liu X., Li J. and Chang T., A Miniaturized Circularly- Polarized Antenna for In-Body Wireless Communications, Micromachines, 10 (2019), No. 70, pp.1-11.
- [17] Mahalakshmi N., and Thenmozhi A., Design of Hexagon Shape Bow-Tie Patch Antenna for Implantable Bio-Medical Applications, Alexandria Engineering Journal, 56 (2017), No. 2, 235-239, 2017.
- [18] P. Soontornpipit, Design of Implanted PIFA for Implantable Biotelemetry Locations: Chest and Abdomen, Procedia Computer Sciece, 86 (2016), 236-239.
- [19] Djellid A., Pichon L., Koulouridis S., and Bouttout F., Miniaturization of a PIFA Antenna for Biomedical Applications Using Artificial Neural Networks, Progress In Electromagnetics Research M, 70 (2018), 1–10.
- [20] Kiourti A., and Nikita K., Miniature Scalp-Implantable Antennas for Telemetry in the MICS and ISM Bands: Design, Safety Considerations and Link Budget Analysis, IEEE Transactions on Antennas Propagation, 60 (2012), No. 8, 3568-3575.
- [21] Basir A., et al., A Dual-Band Implantable Antenna with Wide- Band Characteristics at MICS and ISM Bands, Microwave and Optical Technology Letters, 60 (2018), No. 12, 2944-2949.
- [22] Mahalakshmi N., and Thenmozhi A., Design and Development of Dual-Spiral Antenna for Implantable Biomedical Application, Biomedical Research, 28 (2017), No. 12, 5237- 5240. 134 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 7/2020
- [23] Duran-Sindreu M., Naqui J., Paredes F., Bonache J., and Marti F., Electrically Small Resonators for Planar Metamaterial, Microwave Circuit and Antenna Design: A Comparative Analysis, Applied Sciences, 2 (2012), No. 4, 375-395.
- [24] Alrawashdeh R.S., Huang Y., Kod M., and Sajak A. A. B., A Broadband Flexible Implantable Loop Antenna with Complementary Split Ring Resonators, IEEE Antennas and Wireless Propagation Letters, 14 (2015), 1506-1509.
- [25] Zakavi P., Karmakar N. C., and Griggs I., "Wireless Orthopedic Pin for Bone Healing and Growth: Antenna Development, IEEE Transactions on Antennas and Propagation, 58 (2010), No. 12, 4069-4074.
- [26] Lodato R., and Marrocco G., Close Integration of a UHF-RFID Transponder Into a Limb Prosthesis for Tracking and Sensing, IEEE Sensors Journal, 16 (2016), No. 6, 1806-1813.
- [27] Khokle R. P., Esselle K. P., Heimlich M., and Bokor D., Design of a Miniaturized Bone Implantable Antenna for a Wireless Implant Monitoring Device, Loughborough Antennas and Propagation Conference (LAPC), Loughborough, 2017, 1-2.
- [28] Alrawashdeh R., Huang Y. and Cao. P, A Flexible Loop Antenna for Total Knee Replacement Implants in the MedRadio Band, 2013 Loughborough Antennas and Propagation Conference (LAPC), Loughborough, 2013, 225-228.
- [29] Andreuccetti D., Fossi R. and Petrucci C., Calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz, Institute for Applied Physics, Italian National Research Council, Florence (Italy), 1997. Accessed: Jan. 25, 2019. [Online]. Available: http://niremf.ifac.cnr.it/tissprop/
- [30] Kiourti A., and Nikita K. S., Methodologies for Fast and Accurate Design of Implantable Antennas: Analysis and Comparison, 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, 2013, 579-582.
- [31] Hayt W., and Buck J., Engineering Electromagnetics, USA, New York: McGraw Hill, 2012.
- [32] Ziolkowski R. W., and Erentok A., Metamaterial-Based Efficient Electrically Small Antennas, IEEE Transactions on Antennas and Propagation, 54 (2006), No. 7, 2113-2130.
- [33] M. Sadiku, Elements of Electromagnetics, USA, Oxford: Oxford University Press, 2007.
- [34] Papathanasopoulou V. A., Fotiadis D. I., and Massalas C. V., The Finite Element Method in the Quantification of the Loading Situation in the Human Femur, The Fifth International Workshop on Mathematical Methods in Scattering Theory and Biomedical Technology, 2002, 372-381.
- [35] Ha J.H., et al., Distribution of Lengths of the Normal Femur and Tibia in Korean Children from Three to Sixteen Years of Age, J Med Korean Sci, 18 (2003), No. 5, 715-721.
- [36] Huang Y., and Boyle K., Antennas from Theory to Practice, UK, Chichester: John Wiley & Sons Ltd, 2008
- [37] Rodrigues A. O. et al., SAR Calculations in an Anatomically Realistic Model of the Head of Cellular Phone Users, The Fourth International Conference on Computation in Electromagnetics, Bournemouth, UK, 2002, 1-2.
- [38] Alrawashdeh R., "Path Loss Estimation for Bone Implantable Applications," Jordanian Journal of Computers and Infromation Technology (JJCIT), vol. 4, no. 2, pp. 94-101, Aug. 2018.
- [39] Symeonidis S. et al., Bone Fracture Monitoring Using Implanted Antennas in the Radius Tibia and Phalange Heterogeneous Bone Phantoms, Biomedical Physics and Engineering Express, 4 (2018), No. 4, 1-19.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41f85881-9ed8-44ae-932d-2d77c7bfbbbc