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Abstract: Recently, boiler plants are have been the subject of
intensive investigations in the context of energy-saving technologies
and management for power saving and reduction of emissions. Mod-
ern boiler design offers several benefits with this respect. In the past,
improper design of boilers has been the cause of explosions which
led to the loss of life and property. Modern designs attempt to avoid
such mishaps. This paper presents a novel Self-Adaptive Whale
Optimization Algorithm (SAWOA) for improving the learning char-
acteristic of the neural network, the major intention being to model
the characteristics of the boiler plant and so to effectively predict the
boiler behaviour. The performance analysis of the introduced model
has been carried out using the three test cases with consideration
of several parameters. In the experimental analysis, the introduced
technique is compared with the existing ones, based on such ap-
proaches as Neural Model (NM), Firefly (FF-NM), Adaptive Firefly
NM (AFF-NM), and Whale Optimization Algorithm-NM (WOA-
NM). In this comparison, the error, i.e. the difference between the
actual and the predicted value, was used, and the results revealed
that the error is lower for the introduced technique under different
experimental scenarios. The experimental results demonstrate that
the performance level of SAWOA is by 18% better than those of NM,
FF-NM, and AFF-NM, and by 3.74% better than that of WOA-NM.
This confirms the quality of performance of the proposed approach
regarding boiler plants.

Keywords: boiler, whale optimization, neural model, temper-
ature outlet, feed water flow

1. Introduction

In the search for the energy saving technologies, the boiler plants are subject
to advanced analyses with the aim of finding appropriate designs and appli-
cations. In this context, the Circulated Fluidized Bed boiler (CFB) appeared
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as an advanced boiler combustion technology. It has the ability of enhancing
the desulfurisation and features low nitrogen oxide discharge. In addition, the
evolution of CFB boiler technology associates the commitment for maximizing
the energy-saving with large capacity parameters. Optimization and adequate
parameter management are obligatory for meeting the requirements of the ef-
fective future use of CFB boilers. By optimizing the working parameters, it is
possible to push forward the CFB boiler technology, leading to minimization of
emissions and improvement of energy saving in boiler plants.

The first principle based modelling (see Flynn and Malley, 1999, or Wei,
Wang and Wu, 2007) and the experimentally based modelling (Astrom and
Bell, 2000; Kocaarslan and Cam, 2007) are the two leading boiler plant mod-
elling schemes. The experimental modelling approaches are meant to manage
the way the reality is reflected through the model and to adequately treat the
essential nonlinear dynamics. The relationship between physics and the engi-
neering principles as well as the true plant parameters are the main features
of the first principle based modelling. Besides, the first principle based mod-
elling has the ability of securing the algorithm evaluation. In any case, novel
approaches have to be developed, with the use of the leading optimization meth-
ods for enhancement of boiler effectiveness.

The traditional approach and the so-called intelligent approach are the two
broad approaches to optimizing the boiler operation parameters. The tradi-
tional approaches exploit the known characteristics of the system that include
physical, mechanical and chemical properties, as well as the (differential) equa-
tions to model the boiler and carry out the design process. The experimental
values, actual data, design values and the optimum values are present in the
traditional method. These are employed to optimize the measures of boiler op-
eration. Additionally, the traditional methods offer some definite benefits, such
as, e.g., real-time updating with good probability properties. Nevertheless, the
high investment of resource and manpower, equipment aging questions, difficulty
in handling multiple parameters, survey and installation errors are the draw-
backs of the traditional approach. The so-called intelligent approach is based
on computational intelligence technologies and data mining methods. The devi-
ation inspection, correlation analysis, prediction, and clustering are included in
the scope of techniques applied. Fuzzy logic (Kocaarslan, Ertugrul and Tiryaki,
2006), genetic algorithms, pattern recognition and neural networks (Bahman
and Ali, 2011; Chandok, Kar and Suneet, 2008; Rusinowski and Stanek, 2007;
Bhatnagar, Kavita and Subhash, 2017) are often included in the intelligent
approaches. Here, the real-time updating, strong maneuverability and solv-
ing complex modelling issues are the advantages. However, the longer running
time for obtaining the adequate model fitting is the disadvantages. Hence, the
novel advanced boiler power plant modelling schemes are welcome, leading to
enhanced modelling and optimization.
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The major contribution of this paper is the advance in the representation of
the characteristics of boiler plant, meant for attaining an effective performance
prediction of boiler behaviour. The performance analysis of the implemented
technique has been carried out using three test cases with several parameters.
In the experimental examination, the introduced model is compared with se-
lected existing techniques, such as Neural Model (NM), Firefly (FF-NM) al-
gorithm, Adaptive Firefly NM (AFF-NM) algorithm, and Whale Optimization
Algorithm-NM (WOA-NM). Here, the error magnitude has been examined, and
the results demonstrate that the error is minimal for the introduced SAWOA
methodology under different experimental scenarios. The experimental results
show, therefore, that the performance of SAWOA is better than of NM, FF-NM,
WOA-NM and AFF-NM techniques.

2. Literature survey

In 2015, Beyhan and Kavaklioglu (2015) presented a method for modelling of
U-tube Steam Generators (UTSG). In their work, the Artificial Neural Network
(ANN), online and offline fuzzy system, based on extreme learning machine
(ELM) were also presented for the use in the U-tube steam generators. The de-
tection of water level of the UTSG system was exploited to secure the sufficient
cooling capacity for the nuclear reactor and, at the same time, to prevent the
damage of turbine blades. The root-mean-squared error and the minimum de-
scription length were analysed to measure the performance. It was observed that
the extreme learning machine, ELM, possesses the advantages such as learning
ability, higher degree of modelling precision and effective learning.

Secco et al. (2015) used a computational method to minimize the NOx dis-
charge in a 600MW tangentially-fired pulverized coal boiler. In this case, the
genetic algorithm was exploited to produce the boiler settings automatically. In
addition, the genetic algorithm was connected with the CFD (Computational
Fluid Dynamics) simulations of the boiler in order to enhance the attained val-
ues of the target function. The proposed method minimizes the NOx discharges
while lowering the operational cost and corrosion. It was demonstrated that the
genetic algorithm has the capability to handle operational parameters.. How-
ever, it has problems with the real-time performance.

Then, Sayed, Gharghory and Kama (2015) presented a novel hybrid jump
PSO algorithm that was based on the Cauchy mutation and Gaussian distribu-
tion. It was exploited to tune the setting of PI controllers for the boiler-turbine
unit. This new method was functioning on the basis of the observation of the
global and local optimal particles of the PSO algorithm. The simulation results,
presented in the paper, showed the enhanced optimization regarding the control
measures. In addition, the main benefit of PSO is its high convergence rate.
Since this algorithm has the ability of avoiding local optima and is dependent
upon the algorithmic measures, it performs well in the given application ori-
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ented problem.

A bit earlier, Liu et al. (2013) presented the modelling of the boiler unit
having 1000 MW of capacity, as well as the ultra-supercritical property. The
advanced optimizing boiler model was developed on the basis of an effective
genetic algorithm and neural networks. Even though the developed algorithm
works well within a broad scope of system parameter values, it suffers from sev-
eral drawbacks, like, e.g. poor performance under the inaccurate formulation of
the objective function.

In 2012, Kljajic, Gvozdenac and Vukmirovic (2012) presented an approach
meant to improve the effectiveness of boilers. The approach relies on the op-
erating performance measurement. The scheme was exploited for evaluating
the effectiveness and the performance of arbitrarily chosen 65 boilers, located
in Northern Serbia in 50 sites. The applied neural network shows an enhanced
learning capability. Nevertheless, in this technique, the problems, related to
randomness occurs because of the random initial settings.

Hengyan, Lingmei and Huahua (2011) considered the Circulating Fluidized
Bed Boiler (CFB), where the structure of the network was optimized by using
the Absolute Mean Impact Value (AMV). This was highly helpful for predicting
the efficiency of the boiler, which, in turn, enhanced the predictive ability of the
system. On the top of this, the best value was selected by the Genetic Algorithm
(GA), performing successfully also under different loads.

3. Modelling of boiler plant

3.1. The preliminaries

Figure 1 demonstrates the procedure of the intelligent system model for the
optimal design of boiler plant. Here, u1, u2 and u3 are the inputs, with u1

denoting the fuel flow, u2 signifying the input of the governor valve, and u3

is the feed water flow. Then, y1, y2 and y3 are the three outputs from the
system, where y1 indicates the electric power, y2 indicates the steam pressure,
and y3 indicates the outlet steam temperature. It should be emphasised that
the output and input variables that are selected have a close association with
the stability and the quality of performance of the power plants. A machine
learning algorithm of Neural Network is used for predicting the output for the
available input parameters.

3.2. Theoretical model

The thermal analysis of the boiler BP-1150 is carried out on the basis of the
DIN 1942 norm. In Eq. (1), the balance, associated with the energy for the
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boiler is presented:

ĖIE1
+ ĖIE2

= Q̇hė1 + Ėel1 + Ėel2 + Q̇hl. (1)

Here, ĖIE1
and ĖIE2

represent the input energy flux, Q̇hė1 and Q̇hl refer to the
fuel flux, and Ėel1 and Ėel2 refer to the energy loss flux.

The energy flux, which appears in Eq. (1), can also be represented as follows.
At first, the input energy flux of the fuel is always proportional to the fuel

flux, this being shown in Eq. (2). In Eq. (2), W ∗

d indicates the fuel, which
is characterised by a low heating value, and it is defined through Eq. (3).
Subsequently, the input energy flux is independent of the fuel flux, as this is
represented in Eq. (4). In addition, the flux of the consumed fuel is proportional
to the energy failure flux, and it is represented in Eq. (5). Eq. (6) defines the loss
due to the fuel gas used and unburned combustibles. Then, Eq. (7) represents
the loss due to the unburned combustibles and enthalpy in the slag. The loss,
due to the unburned combustibles in fuel dust and enthalpy is represented in
Eq. (8).

Figure 1. Block diagram of intelligent method for boiler design

ĖIE1
= ĊW ∗

d (2)

W ∗

d = Wd + ie1 + je2 (3)

ĖIE2
= Q̇he2 +Npfm (4)
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Ėel1 = Ėgl + Ėenl1 + Ėenl2 (5)

Ėgl = Ċ (Spe + Sce) = ĊS (6)

Ėenl1 = ĊgA1
(iA1Pe+iA1Ce) = ĊgȦ1

iȦ1
(7)

Ėenl2 = ĊgA2
(iA2Pe+iA2Ce) = ĊgA2

iA2
(8)

From Eq. (9) it results that the energy loss flux is independent of the fuel flux.
On the basis of the DIN 1942 norm, referred to, Eq. (10) is formulated. As
we substitute the Eqs. (2) through (9) in Eq. (1), we obtain Eq. (11). We
formulate the effectiveness of the boiler energy as the ratio of the advantageous
heat flux per input energy of the boiler, as given in Eq. (12), which can also be
formulated as Eq. (13).

Ėel2 = Q̇hCS (9)

˙̇
Qhl = 0.0315Q̇0.7

mup (10)

ĊW ∗

d + Q̇hė2 +Npfm = Q̇hė1 + Ċ
(

S + gȦ1
iA1

+ gA2
iA2

)

+

Q̇hcs + Q̇hl (11)

ηEK = Q̇hė1

Q̇hė1

ĊW ∗

d + Q̇hė2 +Npfm

=
Q̇hė1

ĖIE3

(12)

ηEK = 1−
ĊSpe

ĖIE3

−
ĊSce

ĖIE3

−
Ċ
(

gȦ1
iA1

+ gA2
iA2

)

ĖIE3

Ċ −
Q̇hcs + Q̇hl

ĖIE3

, (13)

where

Lrel =
ĊSpe

ĖIE3

(14)

Lrel2 =
Ċ (gA1

iA1pe + gA2
iA2pe)

ĖIE3

(15)

Lrel3 =
Ċ (gA1

iA1ce + gA2
iA2ce)

ĖIE3

Lrel4 =
Q̇hcs + Q̇hl

ĖIE3

. (16)

Further, Eq. (16) can also be written as Eq. (17), and the obtained model is
estimated on the basis of the indirect method. Among the factors, which influ-
ence boiler effectiveness, Lrel indicates the loss in fuel gas due to the unburned
combustibles in slag and Lrel3 denotes flue dust. This paper focuses on putting
together the empirical methodology on the basis of the result presented in Liu
et al. (2013) and Flynn and Malley (1999).

ηEK = 1− Lrel − Lrel1 − Lrel2 − Lrel3 − Lrel4 (17)
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3.3. The NLARX model

Fig 2 presents the architecture of the model, referred to as the Nonlinear Au-
toregressive Exogenous Input (NLARX), see Deng, Stobart and Maass (2011).
In Eq. (18), the NLARX model is schematically represented, with Y (k) being a
given output and X(k) a given input. In addition, the number of past outputs
is N and the number of past inputs is M , respectively.

Y (k) = F (Y (k − 1) , ..., Y (k −N) , X (k) , ...X (k −M = 1)) (18)

Figure 2. Diagrammatic representation of the NLARX model for modelling of
the boiler plant

Here, the current output is predicted by employing the past input terms. So,
the output from LARX is the effect of the changes, taking place in the inputs
and the preceding output values. Hence, the combined regression function with
two types of blocks – linear and nonlinear – is applied. In some cases also the
conventional regressors are formed with the delayed input and output variables.
Therefore, the problem of nonlinear unconstrained optimization has to be solved
within the NLARX model. Eq. (19) represents again the essence of the model.
In this equation, p represents the number of weighing parameters, ZT represents
the training library, Yt(k) represents the desired output, Yt

∧ (k|ω) represents the

output from NLARX, and ω represents the weights. Further, ‖.‖
2
represents

the L2-norm. Eq. (20) represents the training library and Eq. (21) shows the
vector of weights.

minωe (ω, zT ) =
1

2T

T
∑

t=1

∥

∥Yt (k)− Yt
∧ (k|ω)

∥

∥

2
(19)

ZT = [Yt (k) , X (k)] k = 1, ....., T (20)
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ω = [ω1, ..., ωi, ..., ωp] . (21)

An error measure is treated as the performance index of the network, and it
is represented in Eq. (19). The performance index represents the error of the
network estimation for the definite training patterns. The values of ω, corre-
sponding to the network parameters, have to be changed in order to possibly
reduce the value of the e(ω,zT ) index over the whole trajectory.

The network must identify the characteristics of the boiler plant for effective
modelling of the boiler plant. This identification consists, actually, appropriate
setting of the associations among the inputs and the outputs of the boiler plant.
An accurate knowledge base is needed to determine the relationship. A theoret-
ical model or an empirical investigation is utilized to construct the knowledge
base.

In empirical methodology, selected input and output variables of the boiler
plant are considered. The set of these variables includes such magnitudes as
water flow, spray flow, steam pressure in the throttle, steam temperature, water
level in drum, electrical power, outlet temperature, and outlet steam pressure.
It is known that the dynamic behaviour of the concrete boiler plant cannot be
assessed for practical purposes through the theoretical computations. Hence,
the effects of electric power and enthalpy on each of the inputs is determined.
These are measured for other magnitudes possibly kept constant.

4. Learning of the boiler plant characteristics

4.1. The preliminaries

The mathematical description of single neurons was developed by the McCul-
loch and Pitts in 1942 (see McCulloch and Pitts, 1943; Hopfield, 1982). This
description served as the basis for the construction of artificial neural networks.
The input from one neuron and the output from the other neuron produce the
signals, which move to the dendrite of the neuron. In addition, the estimation of
the dendrite weights is employed to evaluate the intensity of the signal, arriving
at the dendrite. Subsequently, taking the sum of those signals, or taking their
sum multiplied by their corresponding weights provides the neurons activation
functions argument. However, the representation model of the single neuron is
considered as the issue due to the computational complexity. Here, the single
neuron is interlinked in a net, which is the organized form of a lot of single
neurons. Moreover, the signal moves from one layer to another layer in the or-
ganized form of the neural network, and that signal represents the input signal
to a given layer. Generally, for the whole of the network, there is one input
signal, one output signal and one or more hidden layers of a neural network. In
the present work, the feed forward neural network model is implemented that
has the capacity of performing multidimensional nonlinear estimation.
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For the artificial neural network, a single training is required, and this ca-
pability is different and more effective than in the traditional methods. In each
method, multiple iterative training is required to find the weights of neurons.
These weights determine the error, i.e. the difference between the expected value
z and the actual value, y. The applied objective function of the mean squared
error (MSE) is presented in Eq. (22). It is not simple to realize the error delta
factor δ = z − y, appearing in Eq. (22), because the expected values z are not
identifiable in hidden layers. Therefore, the individual error values are identified
by employing the back propagation delta rule (see McCulloch and Pitts, 1943;
Hopfield, 1982). It depends upon the weights of links between the consecutive
hidden layers and the delta factor values δ of the next hidden layer. The back
propagation method assesses the delta factor values of the output layers, which
is returned back due to error propagation. In minimizing the objective function
the gradient approach can be made use of, as represented in Eq. (23) – see
below for the explanation of the working of this formula.

E =
1

2

N
∑

l=1

(zj − yj)
2 (22)

w (s+ 1) = w (s)− η∇E (w (s)) + α∆w (s− 1) (23)

The weight of the neurons is established by employing the Eq. (23). The error
back propagation method in neural networks has been affirmed as providing
good results in neural network training. Nevertheless, for a system showing
strongly nonlinear relationships between the output and input data, the stan-
dard back propagation method may not be sufficiently effective. Consequently,
the SAWOA technique is proposed in this study in order to replace the stan-
dard back propagation procedure, so that, as a result, the nonlinearities can be
accurately identified and rendered.

4.2. The proposed learning method

In 2016, Mirjalili and Lewis (2016) (see also Ling, Zhou and Luo, 2017) intro-
duced the meta-heuristic whale optimization algorithm (WOA), which is derived
from the humpback whale hunting behaviour, referred to as bubble net hunting.
The WOA is a population-based technique. This optimization algorithm fol-
lows three basic behavioural concepts, namely bubble-net foraging behaviour,
encircling prey, and search for prey.

In this paper, the SAWOA is exploited to replace the back propagation
model for the purpose of exact identification of the nonlinearities. Here, , Z
refers to the optimal solution for neural network output, and z represents the
actual neural network output.

In the conventional WOA, the humpback whales identify the position of the
prey and encircle them. The WOA algorithm assumes that the current best
candidate solution is the target prey or is close to the optimum. Once the best
solution is selected, the other agents (solutions) update their positions towards
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the best search agent, this being represented in Eqs. (24) and (25), where
I stands for the current iteration number, B and V represent the coefficient
vectors, Z∗ represents the position vector of the optimal solution, and || denotes
the absolute value.

D = |V.Z∗(i)− Z(i)| (24)

Z (i+ 1) = Z∗(i)−B.D. (25)

The values of vectors B and V are calculated on the basis of Eqs. (26) and (27),

B = 2ar − a (26)

V = 2r. (27)

In Eq. (26), r is a random vector and the components a and a2are first generated
for i = 1 (fixed value), as this is represented in Eqs. (28) and (29).

a = 2− i

(

2

maxi

)

(28)

a2 = −1 + i

(

−1

maxi

)

. (29)

Now, regarding the values of a and a2, Eqs. (30) and (31) are applied when
i = 2. In these equations, ft represents the fitness function.

a = 2− (max (ft)− ft (i− 1)) ∗
2

max (ft)
(30)

a2 =

(

−1 + max (ft)− ft (i− 1) ∗
−1

max (ft)

)

(31)

Eqs. (32) and (33) are utilized to include weights in the calculation of the
components a and a2. Here, w indicates the weight.

a =

(

2− (max (ft)− ft (i− 1)) ∗
2

max (ft)

)

∗ w (32)

a2 =

(

−1 + max (ft)− ft (i− 1) ∗
−1

max (ft)

)

∗ w (33)

In the spiral position updating, the humpback whales attack the prey. Here,
the distance between the prey location and the whale location is estimated.
Subsequently, the helix shaped movement of a humpback is produced using Eq.
(34):

Z (i+ 1) = D
′

.ebm. cos (2πm) + Z∗ (i) (34)
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where D
′

= |Z∗(i)− Z(i)| represents the distance between the optimal solution
(prey) and the nth whale, b is a constant, m denotes a number contained in the
interval [-1, 1], calculated according to Eq. (35):

m = (a2 − 1) ∗ r + 1. (35)

The spiral position updating is given in Eq. (36), where q represents the random
number, which is uniformly distributed between 0 and 1.

Z (i+ 1) =

{

Z∗ (i)−B .D if q < 0.5

D
′

.ebm. cos (2πm) + Z∗ (i) if q ≥ 0.5
(36)

In the search for prey, the humpback whales are the search agents and the search
for prey is the search for the optimal solution (which can, in general, also change
its position). The agents change their positions on the basis of the positions of
other whales. To force the search agent to go away from the reference whale
(avoiding of local solutions), B is set as greater than 1, otherwise it is lower
than 1 (no enforcing of bigger distance from the reference whale). The search
for prey is represented in Eqs. (37) and (38):

D = |V. Zrand (i)− Z (i)| (37)

Z (i+ 1) = Zrand −B.D (38)

where Xrand refers to the random position vector that is selected from the
current population.

The verbal description of the pseudocode of the algorithm, given further on,
is as follows:

1. The population of the whales (of the search agents) is initialized as Zi,
where i = 1, 2, . . . , n.

2. Subsequently, the fitness of each search agent is computed and Z∗ is
assigned to the best search agent.

3. The values of B, V , a, m, q are updated using Eq. (26), (27), (28) and
(35).

4. If q <0.5, the position of current search agent is updated by Eq. (24) for
|B| < 1, while it is updated using Eq. (38) for |B| ≥ 1.

5. Current positions of the search agents are updated using Eq. (34) forq ≥
0.5.

6. The fitness of each search agent is computed and Z∗ is updated.
7. The process is repeated until the entire iteration is completed.

5. Results and discussion

5.1. The procedure

The proposed SAWOA was tested and compared with selected existing methods
such as NM, FF-NM, AFF-NM, WOA-NM, and SAWOA-NM. The experimental
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Pseudocode 1: Proposed SAWOA algorithm for learning the boiler
plant characteristics
Initialize the population Zi (i = 1, 2, . . . , n) and Mgen (Maximum
number of generations)
Let i = 1
Compute the fitness of Zi (i = 1, 2, . . . , n)

For every Zi (i = 1, 2, . . . , n), update a, V , B, m, q
if (q < 0.5)

if (|B| < 1)
Update the current search agent position using Eq. (24)

Else if (|B| ≥ 1),
Choose a random search solution Zrand

Update the current search agent position using Eq. (38)
End if

Else if (q ≥ 0.5)
Update current search agent position using Eq. 34

End if
End for
Verify if any search agent has moved away from the search area and
alter it.
Compute the fitness of Zi (i = 1, 2, . . . , n)
if there is an enhanced search solution, update Z∗.

Let i = i+ 1
When i reaches Mgen, the algorithm is completed
Return the optimal solution Z∗ and the optimal value of the fitness
function



Self-adaptive whale optimization for the design and modelling of boiler plant 341

study has been carried out in the MATLAB platform. In this experiment, ten
parameters are examined in order to effectively analyse the developed model.
The parameters considered include steam pressure, outlet temperature, steam
pressure at the throttle, electrical power, spray water flow, water level in the
drum, steam flow feed, steam pressure in the drum, water flow, and steam
temperature. In addition, the experimentation was performed for three test
cases, and the values of the parameters considered were obtained from Liu et
al. (2013) and Flynn and Malley (1999). In the first test case, such parameters
as electrical power, outlet temperature and steam pressure have been consid-
ered. The remaining parameters have been considered in the test cases 2 and
3. Furthermore, the test case 2 has been split into the “a” and “b” subcases.

5.2. Performance analysis

We shall now present some illustrations, related to the comparative analysis
of performance of the techniques considered for the particular test cases, as
introduced above, against the background of the plant model. It must be em-
phasised that with respect to numerous characteristics the techniques behave
very similarly, and so we are showing here only those diagrams, which actually
present some visible differences between these techniques in terms of perfor-
mance. Thus, Fig. 3 refers to case 1, Fig. 4 to case 2 (a), Fig. 5 to case
2 (b), and finally Fig. 6 to case 3. As said, in the first case three variables
were analysed: electrical power, steam pressure, and outlet temperature. For
this case, only the performance with respect to electrical power differed in any
visible manner, and it is shown here in Fig. 3.

In Fig. 4, selected results for the test case 2 (a), with seven parameters, are
presented. The quantities considered in this test case are: 1. feed water flow,
2. spray water flow, 3. steam flow, 4. steam pressure at the throttle, 5. steam
pressure in the drum, 6. water level in the drum, and 7. steam temperature.
Here, the sole really telling differences occur for feed water flow (Fig. 4 (a)),
equal 4.22% for the proposed SAWOA-NM and for the FF-NM. For the above
listed parameters no significant differences in performance are observed with re-
gard to parameters 2 through 5, and hence the respective curves are not shown.
However, for water level in the drum and for steam temperature, the differences
are observed of 18% and 3%, respectively, for the proposed and the compared
techniques, as this is illustrated in Figs. 4 (b) and 4 (c).

In Fig. 5, corresponding to the test case 2 (b), the selected courses from
among those of seven parameters, i.e. 1. feed water flow, 2. spray water flow,
3. steam temperature, 4. steam flow, 5. steam pressure at the throttle, 6.
steam pressure in the drum, and 7. water level in drum are shown for the pro-
posed and the compared methodologies. Here, the deviation of 3.74% occurs
for the proposed SAWOA-NM in terms of feed water flow (Fig. 5 (a)). Two
other illustrated variables, for which distinct differences are observed, and are



342 S.C. Savargave and A. M. Deshpande

here illustrated, are steam flow (Fig. 5 (b)), and water level in drum (Fig. 5 (c)).

In Fig. 6, the comparison between the proposed and the other techniques
for test case 3 is illustrated. Namely, it can be seen that the proposed technique
differs from the AFF-NM technique with respect to feed water flow. For other
variables, some differences occur for individual samples or their short segments,
but they are not illustrated here, since these differences are, actually, not visible.

Figure 3. Graphical representation of comparison among the outputs of the
proposed and conventional approaches for test case 1 regarding the variable of
electrical power, performance with regard to other variables being very similar

Table 1 and the following ones contain the values of the error, appearing
between the plant and the proposed SAWOA-NM as well as the conventional
NM, FF-NM, AFF-NM, and WOA-NM. The three considered cases, Case 1,
Case 2 and Case 3 are shown, and the error for different parameters is provided.
In addition, the proportions of 25% to 75% of the experimental data have been
also considered. From those tables, it can be concluded that the proposed model
is better than the conventional models in terms of error reduction.

NM: neural model; WOA: whale optimization

5.3. Shrinking effect

The shrinking effect has been studied here by varying the value of q, so as to
control the shrinking or spiral updating behaviour of the whales. If q is greater
than or equal to 0.5, then the Shrinking effect will occur. If q is below 0.5, no
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Figure 4. Graphical representation of comparisons between the output of the
proposed and other compard approaches for the test case 2(a): (a) feed water
flow, (b) water level in the drum, and (c) steam temperature
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Figure 5. Graphical representations of comparisons among the outputs of pro-
posed and conventional approaches for the test case 2(b): (a) feed water flow,
(b) steam flow, and (c) water level in drum
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Table 1. Error values for the proposed and conventional models for the test case 1

Percentage
of experi-
mental
data

25 50 75

Approaches NM FF-
NM

AFF-
NM

WOA WOA-
NM

NM FF-
NM

AFF-
NM

WOA WOA-
NM

NM FF-
NM

AFF-
NM

WOA WOA-
NM

Case 1
Electrical
power

13.87 5.37 4.24 9.66 5.66 4.34 8.53 6.62 4.38 8.62 6.98 4.55 7.56 4.42 3.95

Steam
pressure

.15 .1 .098 .14 .09 .099 .13 .09 .1 .15 .09 .1 .12 .08 .095

Outlet
tempera-
ture

.79 .54 .61 1.1 .5 .62 1.03 .54 .62 1.19 .49 .61 .99 .48 .61
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Table 2. Error values for the proposed and conventional models for the test case 2a

Percentage
of experi-
mental
data

25 50 75

Approaches NM FF-
NM

AFF-
NM

WOA WOA-
NM

NM FF-
NM

AFF-
NM

WOA WOA-
NM

NM FF-
NM

AFF-
NM

WOA WOA-
NM

Case 2 (a)
Feed water
flow

.93 3.74 1.31 1.63 7.96 1.21 1.21 8.37 1.63 1.02 1.52 1.44 1.49 1.4 .87

Steam
pressure at
throttle

.03 .03 .04 .03 .03 .05 .02 .03 .03 .03 .03 .02 .02 .03 .02

Steam
pressure in
drum

.02 .03 .02 .02 .03 .02 .02 .03 .02 .02 .03 .01 .02 .03 .02

Spray wa-
ter flow

.27 .03 .02 .25 .03 .02 .42 .03 .02 .33 .06 .01 .23 .03 .01

Water
level in the
drum

.0031 .0037 .0041 .002 .005 .0034 .0017 .0062 .008 .0026 .0059 .0029 .0014 .0038 .0022

Steam flow .75 3.87 .1 1.33 3.19 .96 .78 2.72 .87 2.64 3.89 2.62 .68 4.38 .81
Steam tem-
perature

.24 .29 .42 .22 .28 .78 .21 .33 .48 .22 .28 .57 .2 .28 .42
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Table 3. Error values for the proposed and conventional models for the test case 2b

Percentage
of experi-
mental
data

25 50 75

Approaches NM FF-
NM

AFF-
NM

WOA WOA-
NM

NM FF-
NM

AFF-
NM

WOA WOA-
NM

NM FF-
NM

AFF-
NM

WOA WOA-
NM

Case 2 (b)
Feed water
flow

.8 .59 1.02 .33 .64 .59 .34 .61 .42 .32 .66 .51 .3 .59 .28

Steam
pressure at
throttle

.01 .01 .02 .0095 .01 .01 .0097 .01 .01 .01 .01 .0095 .0094 .01 .0089

Steam
pressure in
drum

.01 .01 .0083 .0078 .01 .0079 .0078 .01 .01 .0079 .01 .0084 .0077 .01 .0058

Spray wa-
ter flow

.09 .01 .009 .09 .01 .0074 .09 .01 .0078 .09 .01 .0071 .09 .01 .007

Water level
in drum

.0007 .0017 .001 .0011 .0017 .001 .00078 .002 .0015 .00099 .0021 .0009 .0007 .0017 .0012

Steam flow .34 1.64 1.17 .31 1.16 .37 .36 1.33 .64 1.28 1.67 .32 .66 1.15 .39
Steam tem-
perature

.08 .11 .19 .08 .11 .26 .08 .11 .18 .08 .12 .18 .08 .11 .17
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Table 4. Error values for the proposed and conventional models for the test case 3

Percentage
of experi-
mental
data

25 50 75

Approaches NM FF-
NM

AFF-
NM

WOA WOA-
NM

NM FF-
NM

AFF-
NM

WOA WOA-
NM

NM FF-
NM

AFF-
NM

WOA WOA-
NM

Case 3
Feed water
flow

.15 .25 .12 0.15 0.25 0.11 0.17 0.16 0.86 0.17 0.18 0.32 0.18 0.1 0.09

Steam
pressure at
throttle

.00094 .00045 .00022 0.000790.00034 0.0029 0.001 0.0006 0.000930.001 0.000580.
00096

0.0006 0.0000780.0023

Steam
pressure in
drum

.00022 .00011 .0013 0.0002 0.00011 0.0013 0.0002 0.00037 0.000130.00016 0.000740.0013 0.0013 0.00059 0.0012

Spray wa-
ter flow

.0059 .00068 .0015 .0059 .00021 .0014 .0067 .00053 .0011 .0071 .00025 .
0013

.0008 .0002 .00099

Water level
in drum

.0005 .0013 .00019 .00035 .0016 .00028 .00036 .14 .00027 .0004 .00097 .00019 .00035 .0018 .00018

Steam flow .09 1.41 .05 .07 .92 .05 .05 1.19 .05 .06 1.09 .05 .09 0.86 .04
Steam tem-
perature

.0032 .01 .02 .0048 .0061 .02 .0044 .0096 .02 .0097 .0089 .02 .0026 .0079 .016
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Figure 6. Graphical representation of comparison among the outputs of the
proposed and other approaches for the test case-3, for feed water flow

shrinking effect occurs. In the experiment, q is varied from 0.1 to 1 and the
results obtained are shown in Tables 2 through 5.

Table 5 shows the error values for the proposed model for test case 1, in-
volving three parameters, depending upon the shrinking threshold values (0.1
to 1). Likewise, Tables 6, 7 and 8 show the error values for the proposed model
for, respectively, the test cases 2 (a), 2 (b), and 3, with respect to the chaingin
value of the shrinking threshold.

5.4. Analysis of weight influence

On the basis of Eqs. (32) and (33), by varying the weights between 0.1 and
1, the analysis of weights has been performed. In Table 9, error values for the
proposed model are shown, obtained for varying weight values (0.1 to 1) for the
three parameters of the test case 1. Tables 10, 11 and 12 show analogous results
for the test cases 2 (a), 2 (b) and 3, respectively.

6. Conclusions

In this paper, a novel self-adaptive WOA-NM methodology was proposed for
purposes of modeling the characteristics of a boiler plant. Using this novel tech-
nique, effective prediction of boiler behaviour can be obtained. Moreover, the
here proposed self-adaptive WOA was utilized to enhance the learning charac-
teristic of the neural network. The performance of the introduced methodology
was assesed for four different test cases. The test cases involved different subsets
of parameters, including those related to spray water flow, feed water flow, steam
temperature, steam pressure at the throttle, steam pressure in the drum, steam
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Table 5. Error values for the proposed model for test case 1 corresponding to
varying shrinking threshold

Shrinking
threshold

Electrical
power

Steam
pressure

Temperature

0.1 4.63 0.07 0.58
0.2 4.42 0.09 0.67
0.3 4.44 0.1 0.62
0.4 4.09 0.06 0.6
0.5 4.64 0.07 0.61
0.6 4.6 0.08 0.5
0.7 4.59 0.09 0.52
0.8 4.47 0.07 0.41
0.9 3.89 0.06 0.48
1 4.35 0.09 0.56

Table 6. Error values for of the proposed model for test case 2 (a) corresponding
to varying shrinking threshold value

Shrin-
king
thresh-
old

feed
water
flow

steam
pres-
sure
in
drum

spray
water
flow

steam
flow

steam
pres-
sure
at
throt-
tle

water
level
in
drum

steam
tem-
pera-
ture

0.1 0.17 0.0003 0.0061 0.33 0.0013 0.0005 0.0039
0.2 0.13 0.004 0.0079 0.05 0.00049 0.004 0.0039
0.3 0.12 0. 31 0.0048 0.08 0.0013 0.00034 0.0054
0.4 0.17 0.0002 0.0066 0.09 0.0013 0.00038 0.0043
0.5 0.17 0.00032 0.0078 0.05 0.0011 0.00035 0.0053
0.6 0.16 0.00035 0.0057 0.78 0.00095 0.00036 0.01
0.7 0.16 0.00041 0.0066 0.13 0.00075 0.00041 0.0061
0.8 0.15 0.00028 0.0079 0.05 0.0013 0.00039 0.0061
0.9 0.16 0.0001 0.0052 0.06 0.0009 0.00046 0.004
1 0.14 0.00053 0.0076 0.07 0.0013 0.00047 0.0051
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Table 7. Error values for the proposed model for test case 2 (b) corresponding
to varying shrinking threshold value

Shrin-
king
thresh-
old

feed
water
flow

steam
pres-
sure
in
drum

spray
water
flow

steam
flow

steam
pres-
sure
at
throt-
tle

water
level
in
drum

steam
tem-
pera-
ture

0.1 0.1 0.00034 0.00038 1.39 0.00026 0.0018 0.0065
0.2 0.19 0.00048 0.00089 1.13 0.00082 0.0017 0.0068
0.3 0.19 0.00059 0.00047 1.18 0.0006 0.0097 0.01
0.4 0.15 0.0004 0.00043 1.07 0.00042 0.0013 0.0062
0.5 0.14 0.00037 0.00037 1.08 0.0004 0.0018 0.012
0.6 0.13 0.00074 0.00045 1.08 0.00031 0.0018 0.0074
0.7 0.15 0.00016 0.0004 0.8 0.00024 0.0018 0.008
0.8 0.15 0.00046 0.00068 1.41 0.00031 0.002 0.0068
0.9 0.46 0.00054 0.00056 1.41 0.00038 0.0011 0.0067
1 0.19 0.00083 0.00032 1.09 0.00021 0.0018 0.0097

Table 8. Error values for the proposed model for the test case 3 corresponding
to the varying shrinking threshold values

Shrin-
king
thresh-
old

feed
water
flow

steam
pres-
sure
in
drum

spray
water
flow

steam
flow

steam
pres-
sure
at
throt-
tle

water
level
in
drum

steam
tem-
pera-
ture

0.1 0.35 0.0011 0.0051 0.07 0.00098 0.00022 0.02
0.2 0.81 0.0014 0.0013 0.08 0.0015 0.00024 0.01
0.3 0.19 0.0019 0.0011 0.1 0.00087 0.00048 0.02
0.4 0.15 0.0024 0.0011 0.05 0.0041 0.00038 0.01
0.5 0.23 0.0012 0.0014 0.18 0.0013 0.00031 0.01
0.6 0.37 0.001 0.0012 0.05 0.0014 0.00064 0.02
0.7 0.13 0.0015 0.0017 0.06 0.0012 0.00041 0.03
0.8 0.18 0.0023 0.0014 0.05 0.0061 0.00032 0.02
0.9 0.15 0.001 0.0012 0.05 0.0036 0.00043 0.02
1 0.12 0.0014 0.0014 0.09 0.0013 0.00021 0.02
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Table 9. Error values for the proposed model for test case 1 with varying weights

Weights Electrical power Steam pressure Temperature
0.1 4.6 0.097 0.57
0.2 4.56 0.089 0.5
0.3 4.27 0.046 0.55
0.4 4.15 0.09 0.61
0.5 3.99 0.1 0.37
0.6 4.32 0.1 0.59
0.7 4.39 0.09 0.61
0.8 4.19 0.09 0.59
0.9 4.49 0.1 0.6
1 4.53 0.1 0.61

Table 10. Error values for the proposed model for test case 2 (a), corresponding
to varying weights

Weig-
hts

feed
water
flow

steam
pres-
sure
in
drum

spray
water
flow

steam
flow

steam
pres-
sure
at
throt-
tle

water
level
in
drum

steam
tem-
pera-
ture

0.1 0.16 0.00025 0.0079 0.16 0.00085 0.00031 0.0038
0.2 0.16 0.00046 0.0088 0.27 0.00093 0.00039 0.0072
0.3 0.15 0.0003 0.012 0.08 0.00078 0.0005 0.0034
0.4 0.17 0.00026 0.0058 0.05 0.00093 0.00042 0.0056
0.5 0.11 0.00024 0.0062 0.26 0.00099 0.00041 0.01
0.6 0.12 0.0027 0.01 0.05 0.00095 0.00054 0.0048
0.7 0.15 0.00042 0.0061 0.08 0.00012 0.0004 0.003
0.8 0.1 0.00033 0.007 0.07 0.0005 0.00036 0.0047
0.9 0.16 0.0003 0.0083 0.09 0.00011 0.00038 0.0077
1 0.21 0.00024 0.0075 0.08 0.00011 0.00048 0.0054
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Table 11. Error values for the proposed model for the test case 2 (b), corre-
sponding to varying weight values

Weig-
hts

feed
water
flow

steam
pres-
sure
in
drum

spray
water
flow

steam
flow

steam
pres-
sure
at
throt-
tle

water
level
in
drum

steam
tem-
pera-
ture

0.1 0.13 0.00031 0.00022 1.21 0.00039 0.0014 0.0089
0.2 0.12 0.00042 0.00052 1.02 0.000418 0.0012 0.0072
0.3 0.084 0.00073 0.0003 1.4 0.00011 0.0015 0.01
0.4 0.16 0.00057 0.00028 1.42 0.00019 0.0018 0.0097
0.5 0.1 0.00046 0.00019 1.41 0.00036 0.0018 0.0086
0.6 0.18 0.00033 0.00037 1.1 0.00034 0.0016 0.0087
0.7 0.18 0.00029 0.0013 1.15 0.0010 0.0018 0.01
0.8 0.12 0.00076 0.00011 1.19 0.00051 0.0018 0.01
0.9 0.21 0.00025 0.00035 1.13 0.00047 0.0018 0.0081
1 0.18 0.0006 0.00016 0.85 0.00045 0.0018 0.0077

Table 12. Error deviation of the proposed model for test case 3, corresponding
to varying weight values

Weig-
hts

feed
water
flow

steam
pres-
sure
in
drum

spray
water
flow

steam
flow

steam
pres-
sure
at
throt-
tle

water
level
in
drum

steam
tem-
pera-
ture

0.1 0.29 0.0011 0.0018 0.03 0.0019 0.00033 0.01
0.2 0.11 0.0011 0.0015 0.04 0.0015 0.00042 0.02
0.3 0.13 0.0014 0.0023 0.04 0.0028 0.00049 0.03
0.4 0.12 0.0015 0.0015 0.03 0.0036 0.00025 0.023
0.5 0.15 0.0012 0.0014 0.08 0.0021 0.00038 0.02
0.6 0.96 0.0018 0.0013 0.04 0.002 0.00043 0.02
0.7 1.56 0.0032 0.0019 0.05 0.0013 0.00015 0.02
0.8 0.15 0.0013 0.0019 0.07 0.0054 0.00027 0.02
0.9 0.13 0.0013 0.0013 0.13 0.0022 0.00028 0.03
1 0.11 0.0015 0.0014 0.06 0.00039 0.00019 0.03
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flow, and water level in the drum. The proposed methodology was compared
with the such existing methodologies as NM, FF-NM, AFF-NM, WOA-NM in
order to verify the efficiency of the proposed approach In the analysis, error val-
ues have been calculated for respective boiler parameters and their dependence
upon the parameters of the procedure was also analysed. Finally, the simula-
tion results demonstrated that the model, obtained with the new methodology,
coincides with the behaviour of the actual boiler plant with minimum error.

References

Astrom, K.J and Bell, R.D. (2000) Drum boiler dynamics. Automatica,

36(3): 363–378, March.
Athanasios, N., Nikolaos, N., Nikolaosa, M., Panagiotis, G. and

Kakaras, E. (2015) Optimization of a log wood boiler through CFD
simulation methods. Fuel Processing Technology, 137, 75-92, September.

Bahman, Z. N. and Ali, A. (2011) Accurate prediction of the dew points
of acidic combustion gases by using an artificial neural network model.
Energy Conversion and Management, 52(2): 911–916, February.

Beyhan, S. and Kavaklioglu, K. (2015) Comprehensive Modeling of U-
Tube Steam Generators Using Extreme Learning Machines. IEEE Trans-

actions on Nuclear Science, 62(5): 2245-2254.
Bhatnagar, K. and Subhash, G. (2017) Extending the Neural Model to

Study the Impact of Effective Area of Optical Fiber on Laser Intensity.
International Journal of Intelligent Engineering and Systems, 10, 274-283.

Chandok, J. S., Kar, I. N. and Suneet, T. (2008) Estimation of fur-
nace exit gas temperature (FEGT) using optimized radial basis and back-
propagation neural networks. Energy Conversion and Management, 49(8):
1989–1998, August.

Deng, J., Stobart, R. and Maass, B. (2011) The Applications of Artificial
Neural Networks to Engines. In: K. Suzuki, ed., Artificial Neural Networks
- Industrial and Control Engineering Applications. IntechOpen, 309-332,
DOI: 10.5772/15783

DIN 1942 standard (1994) Acceptance testing of steam generators, edition
02.

Flynn, M. and Malley, M. (1999) A drum boiler model for long term
power system dynamic simulation. IEEE Trans Power Syst, 14(1): 209–
217, February.

He, X. and Yang, X. S. (2013) Firefly Algorithm: Recent Advances and
Applications. Int. J. of Swarm Intelligence, 1, 1, 36-50.

Hengyan, X., Lingmei, W. and Huahua, C. (2011) The study of opti-
mizing circulating fluidized bed boiler operational parameters based on
neural network and genetic algorithm. In: D.X. Hunan, L.G. Changsha,
eds, Fourth International conference on Intelligent Computation technol-

ogy and automation, Shenzen, Guangdong (ICICTA’2011). IEEE Com-
puter Society, 287-290.



Self-adaptive whale optimization for the design and modelling of boiler plant 355

Hopfield, J. J. (1982) Neural Networks and Physical Systems with Emergent
Collective Computational Abilities. Proc. Nat. Acad. Sci., 79(8): 2554–
2558, April.

Kljajic, M., Gvozdenac, D. and Vukmirovic, S. (2012) Use of Neu-
ral Networks for modeling and predicting boiler’s operating performance.
Energy, 45(1): 304-311, September.

Kocaarslan, I. and Cam, E. (2007) Experimental modelling and simula-
tion with adaptive control of power plant. Energy Conversion and Man-

agement, 48(3): 787–796, March.
Kocaarslan, I., Ertugrul, C. and Tiryaki, H. (2006) A fuzzy logic

controller application for thermal power plants. Energy Conversion and

Management, 47(4): 442–458, March.
Ling, Y., Zhou, Y. and Luo, Q. (2017) Levy Flight Trajectory-BasedWhale

Optimization Algorithm for Global Optimization. IEEE Access, 5, 6168-
6186.

Liu, X. and Bansal, R. C. (2014) Integrating multi-objective optimization
with computational fluid dynamics to optimize boiler combustion process
of a coal fired power plant. Applied energy, 130, 658-669, October.

Liu, X. J., Kong, X. B., Hou, G. L. and Wang, J. H. (2013) Modeling
of a 1000 MW power plant ultra super-critical boiler system using fuzzy-
neural network methods. Energy Conversion and Management, 65, 518–
527, January.

Maxwell, J. Clerk (1892) A Treatise on Electricity and Magnetism, 3rd
ed., 2. Oxford: Clarendon, 68-73.

McCulloch, W. S. and Pitts, W. (1943) A logical calculus of the ideas
immanent in nervous activity. Bulletin Math Biophys, 5, 115-133.

Mirjalili, S. and Lewis, A. (2016) The Whale Optimization Algorithm.
Advances in Engineering Software, 95, May 2016, 51-67.

Rusinowski, H. and Stanek, W. (2007) Neural modelling of steam boilers.
Energy Conversion and Management, 48(11): 2802–2809, November.

Sayed, M., Gharghory, S.M. and Kama, H. (2015) Gain Tuning PI con-
trollers for Boiler Turbine Unit using a New Hybrid Jump PSO. Journal
of Electrical Systems and Information Technology, 2(1): 99-110, May.

Secco, S. D., Juan, O., Louisy, M. L., Lucas, J. Y., Plion, P. and

Porcheron, L. (2015) Using a genetic algorithm and CFD to identify low
NOx configurations in an industrial boiler. Fuel, 158, 672–683, October.

Song, J., Romero, C. E., Yao, Z. and He, B. (2016) Improved artifi-
cial bee colony-based optimization of boiler combustion considering NOX
emissions, heat rate and fly ash recycling for on-line applications. Fuel,

172, 20-28, May.
Szega, M. and Nowak, G. T. (2015) An optimization of redundant measure-

ments location for thermal capacity of power unit steam boiler calculations
using data reconciliation method. Energy, 92, 135-141, December.

Vandani, A. M. K., Bidi, M. and Ahmadi, F. (2015) Exergy analysis
and evolutionary optimization of boiler blowdown heat recovery in steam



356 S.C. Savargave and A. M. Deshpande

power plants. Energy Conversion and Management, 106, 1-9, December.
Wei, J. L., Wang, J. H. and Wu, Q. H. (2007) Development of a multi-

segment coal mill model using an evolutionary computation technique.
IEEE Transactions on Energy Conversion, 22(3): 718–27, August.

Yang, T., Cui, C., Shen, Y. and Lv, Y. (2016) A novel denitration cost
optimization system for power unit boilers. Applied Thermal Engineering,
96, 400-410, March.

Yang, X. S. (2008) Nature-Inspired Metaheuristic Algorithms. Luniver Press,
UK.

Yang, X. S. (2009) Firefly algorithms for multimodal optimisation. Proc. 5th

International Symposium on Stochastic Algorithms, SAGA 2009: Stochas-

tic Algorithms: Foundations and Applications, 5792, 169-178.


