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Abstract. We study an initial value problem for the one-dimensional non-stationary linear
Schrödinger equation with a point singular potential. In our approach, the problem is
considered as a system of coupled initial-boundary value (IBV) problems on two half-lines,
to which we apply the unified approach to IBV problems for linear and integrable nonlinear
equations, also known as the Fokas unified transform method. Following the ideas of this
method, we obtain the integral representation of the solution of the initial value problem.
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1. INTRODUCTION

The nonlinear Schrödinger (NLS) equation with an external potential V (x)
(the so-called Gross-Pitaevskii (GP) equation)

iut + V (x)u+4u+ 2κu|u|2 = 0, κ = ±1 (1.1)

is used to describe a lot of phenomena in physics. In particular, it describes the
static and dynamical properties of Bose-Einstein condensates, which attracts con-
siderable interest of the researchers after it was experimentally observed in 1995
(see e.g. [19] and the references therein). Also the GP equation is widely used for
modelling of superconductors, for describing optical vortices that resemble small
twisters in a superfluid, and it appears in the studies of laser beams in Kerr media
and focusing nonlinearity [24]. For applications it is desirable to get exact solution of
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the initial value (IV) problem for equation (1.1), because it is helpful for describing
detailed aspects of a particular physical system, when the approximate methods could
be inadequate. But even in one dimension, it is hard to obtain such solutions of the
original nonlinear problem.

A reduction of (1.1) related to short-range interactions consists in replacing V (x) by
a point singular potential, which, in the one-dimensional case, is given by V (x) = qδ(x),
q ∈ R. Assuming that the initial data u(x, 0) = u0(x) is an even function, the solution
is even for all t, and the IV problem

{
iut + uxx + qδ(x)u+ 2u|u|2 = 0, x > 0, t > 0,
u(x, 0) = u0(x), x ≥ 0.

(1.2)

can be reduced to the initial-boundary value (IBV) problem for the NLS equation
without the singular term, with the Robin homogeneous boundary condition, see [9]:





iut + uxx + 2u|u|2 = 0, x > 0, t > 0,
ux(0, t) + qu(0, t) = 0, t ≥ 0,
u(x, 0) = u0(x), x ≥ 0.

(1.3)

In the latter problem, the boundary conditions are called linearizable, because in
this case there exists an adaptation of the Inverse Scattering Transform (IST) method,
which turns to be as efficient as the IST method for the initial value problem (on
the whole line) (see e.g. [16,18]). In other words, an initial boundary value problem
with linearizable boundary conditions is integrable: the appropriate version of the IST
method reduces it to a series of linear problems in a way similar to the problems on
the whole line, which in turn allows obtaining detailed information about properties
of the solution, e.g., its the long-time behavior.

Particularly, in [9] (see also [17]) the authors have studied in details the long-time
behavior of the solution of (1.3) by applying the nonlinear steepest-descent method for
Riemann–Hilbert problems (originally introduced for the whole line problem [10,11]).

However, if u0(x) is not assumed to be even, (1.2) does not reduce to (1.3) and
thus the approach of [9] cannot be applied directly.

When analyzing a nonlinear problem, it is natural to solve, first, the associated
linearized problem:

{
iut + qδ(x− a)u+ uxx = 0, x ∈ R, t > 0,
u(x, 0) = u0(x), x ∈ R.

(1.4)

Problem (1.4) is the main object of study in the present paper. When trying to
reduce (1.4) to a problem on a half-line, we arrive, instead of (1.3), at a system of two
coupled half-line problems, see (2.6a) and (2.6b) below. In other words, we treat the
problem (1.4) as a so-called interface problem, with one interface between two infinite
domains. Recall that the interface problems are initial-boundary value problems, for
which the boundary conditions depend on the solution of the problems in adjacent
domains [6]. These problems have recently attracted considerable attention, see, e.g.,
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[4–7], where the authors obtained explicit solutions of the original problems by applying
the approach known as the Fokas unified transform method (initiated by A. Fokas
[12] and successfully developed in the further works, see, e.g., [8, 14,15]).

The unified transform method is based on the so-called Lax pair representation
of an equation in question. Recall that the Lax pair of a given (partial differential)
equation is a system of linear ordinary differential equations involving an additional
(spectral) parameter, such that the given equation is the compatibly condition of this
system. Originally, the Lax pair representation was introduced for certain nonlinear
evolution equations, called integrable (see e.g. [1]). This representation plays a key role
in solving initial value problems for such equations by the inverse scattering transform
(IST) method, where one (spatial) equation from the pair establishes a change of
variables, passing from functions of the spatial variable to functions of the spectral
parameter, whereas the evolution in time turns out to be, due to the other (temporal)
equation from the Lax pair, linear. The Lax pair representation also plays a crucial role
in studying initial boundary value problems, where, according to the unified transform
method, both equations from the Lax pair are treated in a same manner, as spectral
problems.

While only very special (although very important) nonlinear equations have a Lax
pair representation (the NLS equation in (1.3) is one of them), the Lax pair for linear
equations with constant coefficients can be constructed algorithmically. Particularly,
the Lax pair for the linearized form of the NLS equation, iut + uxx = 0, is as follows:

{
(µe−ikx+ik2t)x = ue−ikx+ik2t,

(µe−ikx+ik2t)t = (iux − ku)e−ikx+ik2t.
(1.5)

Indeed, direct calculations show that the compatibly condition of (1.5), which is
the equality

(ue−ikx+ik2t)t = ((iux − ku)e−ikx+ik2t)x
to be satisfied for all k ∈ C, reads iut + uxx = 0.

In this paper we obtain an integral representation of the solution of problem (1.4)
using the ideas of the Fokas method (see Theorem 2.4). Since this method for both
linear and integrable nonlinear equations uses the similar ingredients – the Lax pair
representation and the analysis of the so-called global relation (see below) – we believe
that our results can be useful for studying the initial value problem for the nonlinear
Schrödinger equation with a point singular potential.

2. REPRESENTATION OF THE SOLUTION

In what follows we will consider the initial value problem (1.4), where u0(x) is a smooth
function decaying as |x| → ∞, a ∈ R is a parameter, and the solution u(x, t) is assumed
to decay to 0 as |x| → ∞ for all t > 0.

First, let us assume that the solution u(x, t) of the problem (1.4) exists, such that
u(x, t) ∈ L1(R) and ux(x, t) → 0 as |x| → ∞ for all t. Our goal is to obtain the
(integral) representation for u(x, t) in terms of the given data u0(x).
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In order to give exact meaning for (1.4), we notice that the delta function 2qδ(x−a)
is to be understood as introducing the jump condition for the first x-derivative:

ux(a+ 0, t)− ux(a− 0, t) + 2qu(a, t) = 0, t > 0 (2.1)

whereas u(x, t) is continuous across x = a:

u(a+ 0, t) = u(a− 0, t), t > 0. (2.2)

Thus (1.4) is to be understood as the following system of equations:




iut + uxx = 0, x ∈ (−∞, a) ∪ (a,∞), t > 0,
u(a+ 0, t) = u(a− 0, t), t > 0,
ux(a+ 0, t)− ux(a− 0, t) + 2qu(a, t) = 0, t > 0,
u(x, 0) = u0(x), x ∈ (−∞,∞).

(2.3)

Let us introduce the notations:

u(1)(x, t) :=
{
u(x, t), x ≤ a,
0, x > a,

u(2)(x, t) :=
{
u(x, t), x ≥ a,
0, x < a,

(2.4)

u
(1)
0 (x) :=

{
u0(x), x ≤ a,
0, x > a,

u
(2)
0 (x) :=

{
u0(x), x ≥ a,
0, x < a.

(2.5)

Then the jump relation can be written as

u(1)
x (a, t)− qu(1)(a, t) = u(2)

x (a, t) + qu(2)(a, t) =: φ(t),

which introduces φ(t) for t > 0. On the other hand, the continuity of u(x, t) allows
introducing

g(t) := u(1)(a, t) = u(2)(a, t).

Therefore, the initial value problem (2.3) can be equivalently written as a pair of
coupled initial boundary value problems, with the inhomogeneous boundary conditions:





iu
(1)
t + u

(1)
xx = 0, x < a, t > 0,

u(1)(x, 0) = u
(1)
0 (x), x < a,

u
(1)
x (a, t)− qu(1)(a, t) = φ(t), t > 0,
u(1)(a, t) = g(t), t > 0.

(2.6a)





iu
(2)
t + u

(2)
xx = 0, x > a, t > 0,

u(2)(x, 0) = u
(2)
0 (x), x > a,

u
(2)
x (a, t) + qu(2)(a, t) = φ(t), t > 0,
u(2)(a, t) = g(t), t > 0.

(2.6b)
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We emphasize that neither φ(t) nor g(t) are given as data for the problems, but (2.6a)
and (2.6b) are coupled by the condition that these functions are the same for the both
problems.

In what follows, we will use the following notations for the direct and inverse
Fourier transforms:

F(f)(k) = f̂(k) =
∞∫

−∞

e−ikxf(x) dx, F−1(f̂)(x) = f(x) = 1
2π

∞∫

−∞

eikxf̂(x) dx.

With this notations, we define

û
(1)
0 (k) := F(u(1)

0 )(x) =
a∫

−∞

e−ikxu0(x)dx,

û
(2)
0 (k) := F(u(2)

0 )(x) =
∞∫

a

e−ikxu0(x)dx.

(2.7)

Now, let us assume for a moment that the functions g(t) and φ(t) are given. Then,
using the Lax pair representation separately for the both equations iu(i)

t + u
(i)
xx = 0,

i = 1, 2, we can obtain explicitly the solutions of (2.6a) and (2.6b).
Introduce the Fourier-type transforms for the “boundary values” g(t) and φ(t):

h1(k, t) :=
t∫

0

eik
2(τ−t)g(τ) dτ, h2(k, t) :=

t∫

0

eik
2(τ−t)φ(τ) dτ. (2.8)

Proposition 2.1. The solutions u(j)(x, t), j = 1, 2 of problems (2.6a) and (2.6b) can
be obtained in terms of hj(k, t) and û(j)

0 (k), j = 1, 2 as follows:

u(1)(x, t) = F−1
(
e−ik

2tû
(1)
0 (k) + e−ika(iq − k)h1(k, t) + ie−ikah2(k, t)

)
, (2.9)

u(2)(x, t) = F−1
(
e−ik

2tû
(2)
0 (k) + e−ika(iq + k)h1(k, t)− ie−ikah2(k, t)

)
. (2.10)

Proof. Consider the Lax pair for equation iu(1)
t + u

(1)
xx = 0:

{
(µe−ikx+ik2t)x = u(1)e−ikx+ik2t,

(µe−ikx+ik2t)t = (iu(1)
x − ku(1))e−ikx+ik2t.

(2.11)

According to (2.11), the 1-form

W1(x, t, k) := (u(1)e−ikx+ik2t) dx+ ((iu(1)
x − ku(1))e−ikx+ik2t)dt

is exact:
W1(x, t, k) = d

[
(µe−ikx+ik2t)

]
, x ≤ a, t ≥ 0. (2.12)
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It follows that
∮

ΓW1(y, τ, k) = 0, where Γ is the rectangle with the vertices (−X, 0),
(a, 0), (a, t), and (−X, t), with any X > 0, and thus

0 =
∫

Γ

W1(y, τ, k) =
∮

Γ

(u(1)e−ikx+ik2τ ) dx+ ((iu(1)
x − ku(1))e−ikx+ik2τ ) dτ

=
a∫

−X

e−ikxu(1)
0 (x) dx+

t∫

0

e−ika+ik2τ (iu(1)
x (a, τ)− ku(1)(a, τ)) dτ

−
a∫

−X

e−ikx+ik2tu(1)(x, t) dx−
t∫

0

eikX+ik2τ (iu(1)
x (−X, τ)− ku(1)(−X, τ)) dτ.

(2.13)

Letting X → +∞ in (2.13) and taking into account the boundary conditions in (2.6a)
and that the last term decays to 0 as X → +∞, equation (2.13) takes the form

û
(1)
0 (k) +

t∫

0

e−ika+ik2τ [i(φ(τ) + qg(τ))− kg(τ)] dτ − eik2tû(1)(k, t) = 0, (2.14)

which, due to the first term, is valid for all k with =k ≥ 0. Using the notations (2.8),
the last equation can be written as

û(1)(k, t) = e−ik
2tû

(1)
0 (k) + e−ika(iq − k)h1(k, t) + ie−ikah2(k, t), =k ≥ 0, (2.15)

which implies (2.9).
The IBV problem for u(2)(x, t) can be solved in a similar way, integrating the form

W2, which is similar to W1 with u(1) replaced by u(2), along the rectangle with the
vertices (X, 0), (a, 0), (a, t), and (X, t) and passing to the limit X → +∞. This gives

û
(2)
0 (k)− eik2tû(2)(k, t)−

t∫

0

e−ika+ik2τ [i(φ(τ)− qg(τ))− kg(τ)] dτ = 0, =k ≤ 0.

(2.16)
Using (2.8), the last equation can be written as

û(2)(k, t) = e−ik
2tû

(2)
0 (k) + e−ika(iq + k)h1(k, t)− ie−ikah2(k, t), =k ≤ 0, (2.17)

which implies (2.10).

Remark 2.2. In the framework of the Fokas method, equations (2.15) and (2.17)
are called the global relations: they relate the “boundary” values of u(x, τ), taken at
x = a, τ = 0, and τ = t, in the spectral terms, i.e., in the form of the corresponding
Fourier-type transforms. The global relations involves given, for a well posed IBV
problem, initial/boundary data (in our case, these are the initial data u0(x)) as
well as unknown boundary values (in our case, these are g(t) and φ(t)). The central
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importance of the global relations is that they allow to characterize the unknown
boundary values in terms of the known (given) ones [2]. While for the IBV problems
for nonlinear PDE with non-linearizable boundary conditions, this characterization
can be effectively used for studying various aspects of the problem [3, 13,16] but does
not give a “complete” solution to the problem (the expression of the solution in terms
of the data for a well-posed problem), in the case of linear PDE this characterization is
expected to help solving the IBV completely [14,15]. Our goal in this paper is actually
to demonstrate the latter for problem (2.3) (or, equivalently, for the coupled problems
(2.6a) and (2.6b)).

An important feature of the global relations (2.15) and (2.17) is the properties
of analyticity and decay of their left-hand sides. For linear problems, the analyticity
and decay follow directly from their definitions as the Fourier transforms of functions
supported on the associated half-lines, which is summarized in the following

Lemma 2.3. The functions hi(k, t), i = 1, 2, defined by (2.8) are analytic in C.
The function û(1)(k, t) is analytic in C+ and û(2)(k, t) is analytic in C− for all t ≥ 0,
where

C− := {k ∈ C : =k < 0},

C+ = {k ∈ C : =k > 0}.
(2.18)

Moreover, e−ikaû(1)(−k, t) and eikaû(2)(k, t) decay to 0 as k → ∞ in C̄− (closure
of C−).

Now observe that, by definition, hi(k, t) = hi(−k, t), i = 1, 2. This observation and
Lemma 2.3 allow rewriting (2.15) and (2.17) as a system of equations

{
û(1)(−k, t)− e−ik2tû

(1)
0 (−k) = eika(iq + k)h1(k, t) + ieikah2(k, t),

û(2)(k, t)− e−ik2tû
(2)
0 (k) = e−ika(iq + k)h1(k, t)− ie−ikah2(k, t),

(2.19)

which holds for all k ∈ C̄−.
Now suppose for a moment that the functions û(i)(k, t), i = 1, 2 are known. Then

(2.19) can be considered as a system of two algebraic equations for two unknown
functions hi(k, t). The solution of this system is given for k ∈ C̄− by

h1(k, t)

=
e−ika

(
û(1)(−k, t)− e−ik2tû

(1)
0 (−k)

)
+ eika

(
û(2)(k, t)− e−ik2tû

(2)
0 (k)

)

2(iq + k) ,
(2.20)

h2(k, t)

=
e−ika

(
û(1)(−k, t)− e−ik2tû

(1)
0 (−k)

)
− eika

(
û(2)(k, t)− e−ik2tû

(2)
0 (k)

)

2i .

(2.21)
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Now we are at a position to formulate and prove the main representation result.
Theorem 2.4. The solution u(x, t) of problem (2.3) is given, in terms of the Fourier
transforms of the initial data, as follows:
(i) if q < 0, then

u(x, t) = 1
2π

∞∫

−∞

eikx−ik
2t

(
û

(1)
0 (k)− iqe−2ikaû

(1)
0 (−k)− kû(2)

0 (k)
iq + k

)
dk, (2.22a)

for x < a, and

u(x, t) = 1
2π

∞∫

−∞

eikx−ik
2t

(
û

(2)
0 (k)− iqe−2ikaû

(2)
0 (−k) + kû

(1)
0 (k)

iq − k

)
dk,

(2.22b)
for x > a,

(ii) if q > 0, then

u(x, t) = 1
2π

∞∫

−∞

eikx−ik
2t

(
û

(1)
0 (k)− iqe−2ikaû

(1)
0 (−k)− kû(2)

0 (k)
iq + k

)
dk

+ qeq(x−a)+iq2t




a∫

−∞

eq(y−a)u0(y) dy +
∞∫

a

e−q(y−a)u0(y) dy


 ,

(2.22c)

for x < a, and

u(x, t) = 1
2π

∞∫

−∞

eikx−ik
2t

(
û

(2)
0 (k)− iqe−2ikaû

(2)
0 (−k) + kû

(1)
0 (k)

iq − k

)
dk

+ qe−q(x−a)+iq2t




a∫

−∞

eq(y−a)u0(y) dy +
∞∫

a

e−q(y−a)u0(y) dy


 ,

(2.22d)
for x > a.

Remark 2.5. The difference in the form of the solution in the cases q > 0 and q < 0
is related to the fact that the denominator in (2.20) has a zero (at k = −iq) in the
domain C− of validity of (2.20) in the case q > 0 only.
Proof. Since hi(k, t) = hi(−k, t), the first equation in (2.19) gives the system




e−ika

(
û(1)(−k, t)− e−ik2tû

(1)
0 (−k)

)
= (iq + k)h1(k, t) + ih2(k, t),

eika
(
û(1)(k, t)− e−ik2tû

(1)
0 (k)

)
= (iq − k)h1(k, t) + ih2(k, t),

(2.23)
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that holds for k ∈ R, which, getting rid of h2(k, t), leads to the equation

e−ikaû(1)(−k, t)− eikaû(1)(k, t) + eika−ik
2tû

(1)
0 (k)− e−ika−ik2tû

(1)
0 (−k)

= 2kh1(k, t), k ∈ R.
(2.24)

Multiply (2.24) by 1
2π e

ik(x−a), integrate over k from −N to N , and pass to the
limit N → ∞. Then for x < a, the first terms vanishes due to Lemma 2.3 and
Jordan’s lemma (related to a half-circle in the lower half-plane of k) whereas the
second term becomes −u(1)(x, t) (as the result of the inverse Fourier transform), and
thus the resulting equation is

− u(1)(x, t) + 1
2π

∞∫

−∞

eikx−ik
2tû

(1)
0 (k) dk − 1

2π

∞∫

−∞

eik(x−2a)−ik2tû
(1)
0 (−k) dk

= 1
2π

∞∫

−∞

eik(x−a)2kh1(k, t) dk, x < a.

(2.25)

Now, in order to obtain u(1)(x, t) in terms of the given (initial) data, we have to
express

I1(x, t) := 1
2π

∞∫

−∞

eik(x−a)2kh1(k, t) dk

for x < a in terms of u(i)
0 (x). First, we notice that h1(k, t) decays to 0 as k →∞ in

the quadrant <k > 0, =k < 0. Thus, by Jordan’s lemma related to a part of large
circle in this quadrant, the integral over the real axis can be deformed to that over
the contour γ, which is shown in Figure 1:

I1(x, t) = 1
2π

∫

γ

eik(x−a)2kh1(k, t) dk, (2.26)

Substituting (2.20) into the r.h.s. of (2.26), we have

I1(x, t) = I2(x, t)− I3(x, t),

where
I2(x, t) = 1

2π

∫

γ

eik(x−a)k
e−ikaû(1)(−k, t) + eikaû(2)(k, t)

iq + k
dk,

and

I3(x, t) = 1
2π

∫

γ

eik(x−a)−ik2tk
e−ikaû(1)

0 (−k) + eikaû
(2)
0 (k)

iq + k
dk. (2.27)

Then Lemma 2.3 and Jordan’s lemma related to a part of big circle in the quadrant
<k < 0, =k < 0 implies that I2(x, t) = 0.
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The integral in the r.h.s. of (2.27) already gives I3 (and thus I1) in terms of the
initial data only. But now we can deform back the integration pass, from γ to the real
axis, again using Lemma 2.3 and Jordan’s lemma related to a part of big circle in the
quadrant <k > 0, =k < 0, which gives:

– if q < 0, then

I3(x, t) = 1
2π

∞∫

−∞

eik(x−a)−ik2tk
e−ikaû(1)

0 (−k) + eikaû
(2)
0 (k)

iq + k
dk,

– if q > 0, then
I3(x, t) = I31(x, t) + I32(x, t),

where

I31(x, t) = i Res
k=−iq

eik(x−a)−ik2tk
e−ikaû(1)

0 (−k) + eikaû
(2)
0 (k)

iq + k

= qeq(x−a)+iq2t




a∫

−∞

eq(y−a)u
(1)
0 (y) dy +

∞∫

a

e−q(y−a)u
(2)
0 (y) dy


 ,

and

I32(x, t) = 1
2π

∞∫

−∞

eik(x−a)−ik2tk
e−ikaû(1)

0 (−k) + eikaû
(2)
0 (k)

iq + k
dk.

Substituting this into (2.25) we arrive at the statements of Theorem 2.4 concerning
u(x, t) for x < a.

Fig. 1. Contour γ: (a) in the case q < 0; (b) in the case q > 0

To find u(2)(x, t), we proceed in the similar way, with the starting point being
the equation (cf. (2.24)), which follows from the second equation in (2.19):

eikaû(2)(k, t)− e−ikaû(2)(−k, t) + e−ika−ik
2tû

(2)
0 (−k)− eika−ik2tû

(2)
0 (k)

= 2kh1(k, t), k ∈ R.
(2.28)

Multiply (2.28) by 1
2π e

ikx, integrate over k from −N to N , and pass to the limit
N → ∞. Then for x < 0, the first terms vanishes due to Lemma 2.3 and Jordan’s
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lemma (related to a half-circle in the lower half-plane of k) whereas the second term
becomes −u(2)(a− x, t) (again as the result of the inverse Fourier transform):

− u(2)(a− x, t) + 1
2π

∞∫

−∞

eik(x−a)−ik2tû
(2)
0 (−k) dk − 1

2π

∞∫

−∞

eik(x+a)−ik2tû
(2)
0 (k) dk

= 1
2π

∞∫

−∞

eikx2kh1(k, t) dk, x < 0,

or

− u(2)(x, t) + 1
2π

∞∫

−∞

e−ikx−ik
2tû

(2)
0 (−k) dk − 1

2π

∞∫

−∞

e−ik(x−2a)−ik2tû
(2)
0 (k) dk

= 1
2π

∞∫

−∞

e−ik(x−a)2kh1(k, t) dk, x > a.

(2.29)

Taking into account that the last term in (2.29) has already been calculated above,
from (2.29) we obtain

u(2)(x, t) = 1
2π

∞∫

−∞

e−ikx−ik
2tû

(2)
0 (−k) dk

− 1
2π

∞∫

−∞

e−ikx−ik
2t iqe

2ikaû
(2)
0 (k)− kû(1)

0 (−k)
iq + k

dk,

(2.30)

in the case q < 0 and

u(2)(x, t) = 1
2π

∞∫

−∞

e−ikx−ik
2tû

(2)
0 (−k) dk

− 1
2π

∞∫

−∞

e−ikx−ik
2t iqe

2ikaû
(2)
0 (k)− kû(1)

0 (−k)
iq + k

dk

+ qe−q(x−a)+iq2t




a∫

−∞

eq(y−a)u
(1)
0 (y) dy +

∞∫

a

e−q(y−a)u
(2)
0 (y) dy


 ,

(2.31)

in the case q > 0. Substituting k by −k in (2.30) and (2.31) we arrive at the statements
of Theorem 2.4 concerning u(x, t) for x > a.
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Remark 2.6. Setting x = a in (2.22) gives one part of the “generalized
Dirichlet-to-Neumann map”, which has to give unknown boundary values (in the
case of problems (2.6a) and (2.6b), they are g(t) and φ(t)) in terms of the given data
(in our case, they are the initial data u0(x)):

g(t) = 1
2π

∞∫

−∞

e−ik
2tk

e−ikaû(1)
0 (−k) + eikaû

(2)
0 (k)

iq + k
dk, (2.32a)

for q < 0, and

g(t) = 1
2π

∞∫

−∞

e−ik
2tk

e−ikaû(1)
0 (−k) + eikaû

(2)
0 (k)

iq + k
dk

+ qeiq
2t




a∫

−∞

eq(y−a)u0(y) dy +
∞∫

a

e−q(y−a)u0(y) dy


 .

(2.32b)

In order to obtain the second part of this map, i.e., φ(t) in terms of u0(x), one can
use equation (2.21) directly following from the global relations. Indeed, multiply (2.21)
by k

π e
−ik2t′ with t′ < t, integrate along γ and take t′ → t. Then the l.h.s. gives φ(t)

whereas in the r.h.s, integrating by parts, interchanging the integrals and calculating
explicitly the integral

∫
γ
e−ikx−ik

2tdk, one arrives at the representation

φ(t) = e−i
π
4

2
√
πt




a∫

−∞

+
∞∫

a


 e

i(x−a)2
4t u′0(x) dx, q ∈ R. (2.33)

for all q ∈ R.
Remark 2.7. Assuming that the initial data u0(x) is a smooth function for x ∈
(−∞, a) ∪ (a,∞) decaying fast as |x| → ∞ and matching well the “inner” conditions
(2.1) and (2.2), i.e.,

u0(a− 0) = u0(a+ 0), u′0(a+ 0)− u′0(a− 0) + 2qu0(a) = 0,
u′′0(a+ 0) = u′′0(a− 0)

(2.34)

(the latter condition is suggested by (2.2) and the equation iut + uxx = 0 considered
at x = a± 0) formulas (2.22) in Theorem 1 give a classical solution to (2.3).

Indeed, assume that u0(x) ∈ C4(R\{a}) ∩ C(R), dp

dxpu0(x) ∈ L1(R \ {a})
(p = 0, . . . , 4), xj d4

dx4u0(x) ∈ L1(R \ {a}) (j = 1, 2), and u0(x) satisfies (2.34). Then,
integrating by parts the definitions (2.7) of û(j)

0 (k) and taking into account (2.34), one
finds that the integrands in (2.22) are O( 1

k4 ) as k →∞. It follows that u(x, t) defined
by (2.22) has partial derivatives ut(x, t) and uxx(x, t) in the domains x < a, t > 0 and
x > a, t > 0 continuous up to the boundaries and satisfying the equation iut+uxx = 0.
Now, integrating (2.22) by parts, it follows that u(x, t) = O

( 1
x2

)
and ux(x, t) = O

( 1
x

)

as |x| → ∞. Particularly, u(x, t) ∈ L1(R) and ux(x, t)→ 0 as |x| → ∞.
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In order to prove that u(x, t) satisfies the initial condition in (2.3), we notice that
u(x, 0) reduces to 1

2π
∫∞
−∞ eikxû

(1)
0 (k)dk for x < a and to 1

2π
∫∞
−∞ eikxû

(2)
0 (k)dk for

x > a, again applying Lemma 2.2 and Jordan’s lemma for a circle in C−.
Finally, the jump condition in (2.3) can be proven directly, starting from (2.22)

and using the expressions (2.32) for u(a, t).

3. THE LONG-TIME ASYMPTOTICS

The IST method, particularly, its realization as a Riemann–Hilbert problem method,
has proven its high efficiency for studying asymptotic regimes of nonlinear integrable
equations, particularly, the long-time behavior of solutions of initial value problems
[10,11] as well as initial boundary value problems (see, e.g., [9]), where the result can
be obtained by applying the so-called nonlinear steepest descent method for oscillatory
Riemann–Hilbert problems. For linear equations, as far as the solution is given in terms
of contour integrals, it is the standard steepest descent method that allows obtaining
the asymptotic results. For problem (2.3), its application leads to the following result.
Proposition 3.1. Let u0(x) ∈ L1(R). Then the long-time asymptotics of the solution
u(x, t) of problem (2.3) along any ray x

2t = ξ is as follows:
(i) if q < 0, then, as t→∞,

u(x, t) = eitξ
2−iπ4

2
√
πt

(
û

(1)
0 (ξ)− iqe−2iξaû

(1)
0 (−ξ)− ξû(2)

0 (ξ)
iq + ξ

)
(1 + o(1)),

for x < a and

u(x, t) = eitξ
2−iπ4

2
√
πt

(
û

(2)
0 (ξ)− iqe−2iξaû

(2)
0 (−ξ) + ξû

(1)
0 (ξ)

iq − ξ

)
(1 + o(1)),

for x > a,
(ii) if q > 0, then as t→∞

u(x, t) = qeq(x−a)+iq2t




a∫

−∞

eq(y−a)u0(y) dy +
∞∫

a

e−q(y−a)u0(y) dy




+ eitξ
2−iπ4

2
√
πt

(
û

(1)
0 (ξ)− iqe−2iξaû

(1)
0 (−ξ)− ξû(2)

0 (ξ)
iq + ξ

)
(1 + o(1)),

for x < a and

u(x, t) = qe−q(x−a)+iq2t




a∫

−∞

eq(y−a)u0(y) dy +
∞∫

a

e−q(y−a)u0(y) dy




+ eitξ
2−iπ4

2
√
πt

(
û

(2)
0 (ξ)− iqe−2iξaû

(2)
0 (−ξ) + ξû

(1)
0 (ξ)

iq − ξ

)
(1 + o(1)),

for x > a.
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4. CONCLUDING REMARK

In the present paper we have solved the IV problem for the linear Schrödinger equation
with a point singular potential by the Fokas unified transform method. Although the
initial and initial-boundary value problems for linear equations in 1+1 dimension could
be, in principle, treated by the classical methods (particularly, for the second-order
equations), it is important to solve the original problem by the unified transform
method, since it is known as providing effective solutions to both linear and nonlinear
integrable equations [12, 13, 23]. Therefore, the present paper can be viewed as a step
in attacking (particularly, in a perturbative sense [21, 22]) the much more complicated
initial value problem for the nonlinear Schrödinger equation with a point singular
potential

iut + uxx + qδ(x)u+ 2u|u|2 = 0,
in the case of general initial data u0(x) (not assuming it to be an even function).
Moreover, the Fokas method is proved to be highly efficient for finding explicit solutions
of some interface problems [4, 6–8]. Therefore, in our paper we have established
the applicability of the method for our particular interface problem.
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