Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the Box-Wilson statistical experimental design method was employed to evaluate suspension pH, salt (CaCl2·2H2O) concentration and anionic flocculant (A-150) amount in flocculation of coal. Response function coefficients were determined by the regression analysis of experimental data and the predictions were found to be in good agreement with the experimental results. The optimum pH, salt (CaCl2·2H2O) concentration and anionic flocculant (A-150) amount were determined as 9.8, 0.0009 M and 791 g/Mg respectively, when minimum turbidity and maximum settling rate are considered.
Słowa kluczowe
Rocznik
Tom
Strony
811--822
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Hitit University, Metallurgical and Materials Eng. Dept., TR-19030 Corum-Turkey
autor
- Cumhuriyet University, Mining Engineering Dept., TR-58140 Sivas-Turkey
autor
- Istanbul University, Mining Engineering Dept., TR-32320 Istanbul-Turkey
Bibliografia
- 1. AMERICAN CYANAMID COMPANY, 1989. Mining Chemicals Handbook. Revised Edition, Mineral Dressing Notes No: 26-1, USA.
- 2. ANGLE C.W., SMITH-PALMER T., WENTZELL B.R., 1997. The effects of cationic polymers on flocculation of a coal thickener feed in washery water as a function of pH, Journal of Applied Polymer Science, 64, 783–789.
- 3. ATESOK G., SOMASUNDARAN P., MORGAN L.J., 1988. Adsorption properties of Ca2+ on Na-Kaolinite and its effect on flocculation using polyacrylamides, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 32(1,2), 127–138.
- 4. ATTIA Y.A., 1992. Flocculation, In: J.S. Laskowski and J. Ralston, Editors. Colloid Chemistry in Mineral Processing, Elsevier, Amsterdam, Chapter 9.
- 5. BESRA L., SENGUPTA D.K., ROY S.K., 2000. Particle characteristics and their influence on dewatering of kaolin, calcite and quartz suspensions, International Journal of Mineral Processing, 59(2), 89–112.
- 6. CEBECI C., SARIOGLU M., KAHRIMAN A., 2002. Determination of various flocculants’ performance in flocculation of lignite waste pulps, Asian Journal of Chemistry, 14(1), 413–419.
- 7. CEBECI Y., SONMEZ I., 2006. Application of the Box-Wilson experimental design method for the spherical oil agglomeration of coal, Fuel, 85, 289–297.
- 8. CEBECI Y., 1996. The investigation of effects of some parameters on the performance of selective agglomeration of lignites, In: VI International Mineral Processing Symposium, Kusadasi, Turkey, 445–459.
- 9. CLARK A.Q., HERRINGTON T.M., PERTZOLD J.C., 1990. The flocculation of kaolin suspensions with anionic polyacrylamides of varying molar mass and anionic character, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 44, 247–261.
- 10. CROZIER R.D., 1992. Flotation, Pergamon Press.
- 11. DAVIES O.L., 1956. The design and analysis of industrial experiments, Hafner Publishing Co., New York.
- 12. FOSHEE W.C., SWAN M.J., KLIMPEL R.R., 1982. Improvement in coal preparation–water clarification through polymer flocculation, Mineral Engineering, 34, 293–297.
- 13. GREGORY J., 1989. Fundamental of flocculation, Critical Reviews in Environmental Controls, 19, 185–230.
- 14. HAMZA H.A., MO A.W., FRENETTE R., 1988. Chemical reagents for mechanical dewatering, Industrial Practice of Fine Coal Processing, Colorado, USA, p. 231.
- 15. HOGG R., 1980. Fine Particle Processing, In P. Somasundaran (Ed.), Vol. 2, AIME, New York, 990–999.
- 16. HOGG R., 2000. Flocculation and dewatering, International Journal of Mineral Processing, 58, 223–236.
- 17. HOGG R., BRUNNAIL P., SUHARYONO H., 1993. Chemical and physical variables in polymer-induced flocculation, Minerals and Metallurgical Processing, 10, 81–5.
- 18. HULSTON J., DE KRETSER R.G., SCALES P.J., 2004. Effect of temperature on the dewaterability of hematite suspensions, International Journal of Mineral Processing, 73, 269–279.
- 19. JAMES R.O., HEALY T.W., 1972a. Adsorption of hydrolysable metal ions at the oxide–water interface: I. Co(II) adsorption on SiO2 and TiO2 as model systems, Journal of Colloid and Interface Science, 40, 42–52.
- 20. JAMES R.O., HEALY T.W., 1972b. Adsorption of hydrolysable metal ions at the oxide–water interface: II. Charge reversal of SiO2 and TiO2 colloids by adsorbed Co(II), La(III), and Th(IV) as models systems, Journal of Colloid and Interface Science, 40, 53–63.
- 21. JAMES R.O., HEALY T.W., 1972c. Adsorption of hydrolysable metal ions at the oxide–water interface: III. A thermodynamic model of adsorption, Journal of Colloid and Interface Science, 40, 65–81.
- 22. KIM S.S., MORSI B.I., ARAUJO G., CHIANG S.-H., BLACHERE J., SHARKEY A., 1991. Effect of grinding conditions on the performance of a selective agglomeration process for physical coal cleaning, Coal Preparation, 9(3–4), 141–153.
- 23. LASKOWSKI J.S., 2001. Coal surface properties, In: Fuerstenau, DW, editor. Coal flotation and fine coal utilization. Amsterdam: Elsevier Science BV.
- 24. LEJA J., 1982. Surface Chemistry of Froth Flotation, New York: Plenium Press.
- 25. MEHROTRA V.P., SASTRY K.V.S., MONEY B.W., 1983. Review of oil agglomeration techniques for processing of fine coals, International Journal of Mineral Processing, 11, 175–201.
- 26. MPOFU P., ADDAI-MENSAH J., RALSTON J., 2003. Influence of hydrolyzable metal ions on the interfacial chemistry, particle interactions, and dewatering behavior of kaolinite dispersions, Journal of Colloid and Interface Science, 261(2), 349–359.
- 27. MPOFU P., ADDAI-MENSAH J., RALSTON J., 2005. Interfacial chemistry, particle interactions and improved dewatering behaviour of smectite clay dispersions, International Journal of Mineral Processing, 75, 155–171.
- 28. PAWLAK W., TURAK A., IGNASIAK B., 1985. Selective agglomeration of low rank bituminous and subbituminous cretaceous coals, In: Proceedings 4th International Symposium on Agglomeration, Toronto, 907–915.
- 29. RATTANAKAWIN C., HOGG R., 2001. Aggregate size distributions in flocculation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177, 87–98.
- 30. REUTER J.M., HARTAN H.G., 1986. Structure and reaction kinetics of polyelectrolytes and their use in solid-liquid processing, Aufbereitungs-Technik, 11, 598–606.
- 31. SABAH E., CENGIZ I., 2004. An evaluation procedure for flocculation of coal preparation plant tailings, Water Research, 38, 1542–1549.
- 32. SABAH E., ERKAN Z.E., 2005. Interaction mechanism of flocculants with coal waste slurry, Fuel, 85, 350–359.
- 33. SARIOGLU M., CEBECI Y., BEYAZIT N., 2002. Investigation of the effects of some operating parameters by using anionic and cationic flocculants for removing solid material in the lignite wastewaters, Asian Journal of Chemistry, 14, 388–394.
- 34. SILLEN L.G., MARTELL A.E., 1971. Stability constant of metal-ion complexes, Special Publications Nos. 17 and 25, The Chemical Society. London.
- 35. SOMASUNDARAN P., DAS K.K., 1998. Flocculation and selective flocculation – An overview, In: Atak, S., Önal, G., Çelik, M.S., (Editors), Proceedings of 7th International Mineral Processing Symposium (Innovation in mineral and coal processing), İstanbul, Turkey, Balkema, 81–91.
- 36. SOMASUNDARAN P., 1980. Fine Particle Processing, In P. Somasundaran (Ed.), Vol. 2, AIME, New York, 947–976.
- 37. SU F., RAO K.H., FORSSBERG K.S.E., SAMSKOG P.O., 1998. Dephosphorization of magnetite fines – Part 2: Influence of chemical variables on flotation kinetics, IMM Transactions of the Institution of Mining and Metallurgy, Section C: Mineral processing and Extractive Metallurgy, 107, C103–C110.
- 38. TAO D., GROPPO J.G., PAREKH B.K., 2000. Enhanced ultrafine coal dewatering using flocculation filtration processes, Minerals Engineering, 13, 163–171.
- 39. YU X., SOMASUNDARAN P., 1996. Role of polymer conformation in interparticle-bridging dominated flocculation, Journal of Colloid and Interface Science, 177, 283–287.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41ecd05c-bd33-4562-b161-7c660e94265e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.