Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The objective of the conducted research is to respond to the investigative question related to delineating potential areas of 3PL (third-party logistics) activities that could be supported by quantum computing. Design/methodology/approach: This study focuses on the exploration and analysis of literature, utilizing both the SCOPUS database and Google Scholar, to identify potential application areas of quantum computers in the 3PL sector. The literature review is based on a systematic approach that includes defining the aim, selecting, and critically assessing existing materials, with particular focus on digitalization, security of information flow, external transport planning, warehousing, and VAS (Value-Added Services). Findings: The analysis has demonstrated that quantum computers hold the potential to significantly influence 3PL businesses, contributing to innovation and enhancing operational efficiency. Specifically, this technology can revolutionize aspects such as supply chain optimization, data security, warehouse management, and the creation of added value through advanced analytics and personalized services. Research limitations: The study encountered constraints related to access to comprehensive databases, which may have influenced the thoroughness of the literature review. Furthermore, the scarcity of literature focusing directly on the application of quantum computers within the 3PL context indicates a need for additional, more in-depth empirical research in this field. Value of the paper: This paper holds both theoretical and practical value, indicating potential innovations and competitive advantages that can be achieved in the 3PL sector through the application of quantum computers. The paper highlights not only opportunities but also challenges and possible directions for future research, providing a foundation for upcoming research initiatives that may contribute to the development and transformation of operational standards in third-party logistics. This article can inspire future research in the area of using quantum computers in external logistics activities.
Rocznik
Tom
Strony
277--303
Opis fizyczny
Bibliogr. 112 poz.
Twórcy
autor
- Silesian University of Technology, Organization and Management Faculty, Department of Logistics
autor
- Silesian University of Technology, Organization and Management Faculty, Economics and Informatics Institute
Bibliografia
- 1. Abdelgaber, N., Nikolopoulos, C. (2021, September). Calculating the Topological Resilience of Supply Chain Networks Using Quantum Hopfield Neural Networks. 4th International Conference on Artificial Intelligence for Industries (AI4I). IEEE, pp. 61-62). https://doi.org/10.1109/ai4i51902.2021.00023
- 2. Agarwal, P., Alam, M. (2022). Quantum-Inspired Support Vector Machines for Human Activity Recognition in Industry 4.0. Proceedings of Data Analytics and Management: ICDAM 2021, Vol. 1. Springer Singapore, pp. 281-290. https://doi.org/10.1007/978-981-16-6289-8_24
- 3. Aguezzoul, A. (2013). Overview on 3PL selection problem. Supply Chain Management: Concepts, Methodologies, Tools, and Applications (pp. 259-273). IGI Global. https://doi.org/10.4018/978-1-4666-2625-6.ch015
- 4. Ajagekar, A., Humble, T., You, F. (2020). Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems. Computers & Chemical Engineering, 132, 106630. https://doi.org/10.1016/j.compchemeng.2019. 106630
- 5. Ajakaiye, O.I. (2012). The Role of Logistics Service Providers in the Logistics Firms' Supply Chain.
- 6. Al-Mohammed, H.A., Al-Ali, M.S., Alkaeed, M. (2020, December). Quantum Computer Architecture From Non-Conventional Physical Simulation Up To Encryption Cracking, Machine Learning Application, And More. 16th International Computer Engineering Conference (ICENCO). IEEE, pp. 17-24. https://doi.org/10.1109/icenco49778. 2020.9357401
- 7. Alsaiyari, M., Felemban, M. (2023, February). Variational Quantum Algorithms for Solving Vehicle Routing Problem. International Conference on Smart Computing and Application (ICSCA). IEEE, pp. 1-4. https://doi.org/10.1109/icsca57840.2023.10087522
- 8. Antonowicz, M. (2011). Regulation and logistics in rail freight transport. Archives of Transport, 3. https://doi.org/10.2478/v10174-011-0018-5.
- 9. Assidi, H., Ayebie, E.B., Souidi, E.M. (2018). Two mutual authentication protocols based on zero-knowledge proofs for RFID systems. Information Security and Cryptology–ICISC 2017: 20th International Conference. Seoul, South Korea, November 29-December 1, 2017, Revised Selected Papers, 20 (pp. 267-283). Springer International Publishing. https://doi.org/10.1007/978-3-319-78556-1_15
- 10. Azad, U., Behera, B.K., Ahmed, E.A., Panigrahi, P.K., Farouk, A. (2022). Solving vehicle routing problem using quantum approximate optimization algorithm. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/tits.2022.3172241
- 11. Azzaoui, A.E., Kim, T.W., Pan, Y., Park, J.H. (2021). A quantum approximate optimization algorithm based on blockchain heuristic approach for scalable and secure smart logistics systems. Human-centric Computing and Information Sciences, 11(46), 1-12. https://doi.org/10.1186/s13673-018-0136-7
- 12. Bacinger, F., Boticki, I., Mlinaric, D. (2022). System for Semi-Automated Literature Review Based on Machine Learning. Electronics, 11(24), 4124. https://doi.org/10.3390/ electronics11244124
- 13. Banupriya, S., Kottursamy, K., Bashir, A.K. (2021). Privacy-preserving hierarchical deterministic key generation based on a lattice of rings in public blockchain. Peer-to-Peer Networking and Applications, 14, 2813-2825. https://doi.org/10.1007/ s12083-021-01117-2
- 14. Batra, K., Zorn, K.M., Foil, D.H., Minerali, E., Gawriljuk, V.O., Lane, T.R., Ekins, S. (2021). Quantum machine learning algorithms for drug discovery applications. Journal of chemical information and modeling, 61(6), 2641-2647. https://doi.org/10.1021/ acs.jcim.1c00166
- 15. Bednar, E., Drager, S.L. (2007, April). Quantum simulator review. Quantum Information and Computation, Vol. 6573. SPIE, pp. 150-160. https://doi.org/10.1117/12.719758
- 16. Bentley, C.D., Marsh, S., Carvalho, A.R., Kilby, P., Biercuk, M.J. (2022). Quantum computing for transport optimization. arXiv preprint arXiv: 2206.07313. https://doi.org/10.1063/pt.5.028530
- 17. Bogdanov, Y.I., Bogdanova, N.A., Fastovets, D.V., Lukichev, V.F. (2019, March). Quantum approach to the dynamical systems modeling. International Conference on Micro-and Nano-Electronics 2018, Vol. 11022. SPIE, pp. 728-739. https://doi.org/10.1117/ 12.2522426
- 18. Boghosian, B.M., Taylor IV, W. (1998). Simulating quantum mechanics on a quantum computer. Physica D: Nonlinear Phenomena, 120(1-2), 30-42. https://doi.org/10.1016/ s0167-2789(98)00042-6
- 19. Brandmeier, R.A., Heye, J.A., Woywod, C. (2022). Future Development of Quantum Computing and Its Relevance to NATO. Connections: The Quarterly Journal, 20, 89-110. https://doi.org/10.11610/connections.20.2.08
- 20. Chertkov, E., Cheng, Z., Potter, A.C., Gopalakrishnan, S., Gatterman, T.M., Gerber, J.A., Foss-Feig, M. (2023). Characterizing a non-equilibrium phase transition on a quantum computer. Nature Physics, 1-6. https://doi.org/10.1038/s41567-023-02199-w
- 21. Cheung, K.F., Bell, M.G., Bhattacharjya, J. (2021). Cybersecurity in logistics and supply chain management: An overview and future research directions. Transportation Research Part E: Logistics and Transportation Review, 146, 102217. https://doi.org/10.1016/ j.tre.2020.102217
- 22. Chuang, I.L., Yamamoto, Y. (1995). Simple quantum computer. Physical Review A, 52(5), 3489. https://doi.org/10.1103/physreva.52.3489
- 23. Cichosz, M., Goldsby, T.J., Knemeyer, A.M., Taylor, D.F. (2017). Innovation in logistics outsourcing relationship-in the search of customer satisfaction. LogForum, 13(2), 209-219. https://doi.org/10.17270/j.log.2017.2.8.
- 24. Correll, R., Weinberg, S.J., Sanches, F., Ide, T., Suzuki, T. (2023). Quantum Neural Networks for a Supply Chain Logistics Application. Advanced Quantum Technologies, 6(7), 2200183. https://doi.org/10.1002/qute.202200183
- 25. Czakon, W., Klimas, P., Tiberius, V., Ferreira, J., Veiga, P.M., Kraus, S. (2022). Entrepreneurial Failure: Structuring a Widely Overlooked Field of Research. Entrepreneurship Research Journal, https://doi.org/10.1515/erj-2021-0328
- 26. Darko, E.O., Vlachos, I. (2022). Creating valuable relationships with third-party logistics (3PL) providers: a multiple-case study. Logistics, 6(2), 38. https://doi.org/10.3390/ logistics6020038
- 27. Date, P., Patton, R., Schuman, C., Potok, T. (2019). Efficiently embedding QUBO problems on adiabatic quantum computers. Quantum Information Processing, 18, 1-31. https://doi.org/10.1007/s11128-019-2236-3
- 28. Ding, Y., Chen, X., Lamata, L., Solano, E., Sanz, M. (2019). Logistic network design with a D-Wave quantum annealer. arXiv preprint arXiv: 1906.10074. https://doi.org/10.1007/s42979-021-00466-2
- 29. Dixit, V.V., Niu, C. (2023). Quantum computing for transport network design problems. Scientific Reports, 13(1), 12267. https://doi.org/10.1038/s41598-023-38787-2
- 30. Dixit, V., Rey, D., Waller, T., Levin, M. (2021). Quantum Computing to Solve Scenario-Based Stochastic Time-Dependent Shortest Path Routing. Available at SSRN 3977598. https://doi.org/10.2139/ssrn.3977598
- 31. Ebert, M. (2016). Quantum computing academy trains future researchers to optimize applications for spaceflight. Proceedings of the International Astronautical Congress (IAC) https://doi.org/10.2514/6.iac-04-t.1.06
- 32. Engel, S., Münch, C., Schinkel, F., Holschke, O., Geitz, M., Schüller, T. (2022, April). Segment routing with digital annealing. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, pp. 1-9. https://doi.org/10.1109/noms54207. 2022.9789782
- 33. Ferraro, E., Prati, E. (2020). Is all-electrical silicon quantum computing feasible in the long term? Physics Letters A, 384(17), 126352. https://doi.org/10.1016/j.physleta.2020.126352
- 34. Garcia Garcia, J., Galan Jativa, P. (2023, July). Application of Quantum Annealing to Supply Chain Planning under Uncertainty. Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 2216-2223. https://doi.org/10.1145/ 3583133.3596350
- 35. Giri, B.C., Sarker, B.R. (2017). Improving performance by coordinating a supply chain with third party logistics outsourcing under production disruption. Computers & Industrial Engineering, 103, 168-177. https://doi.org/10.1016/j.cie.2016.11.022
- 36. Griffin, P., Sampat, R. (2021, September). Quantum computing for supply chain finance. IEEE International Conference on Services Computing (SCC). IEEE, pp. 456-459. https://doi.org/10.1109/scc53864.2021.00066
- 37. Griffis, S.E., Goldsby, T.J., Cooper, M., Closs, D.J. (2007). Aligning logistics performance measures to the information needs of the firm. Journal of business logistics, 28(2), 35-56. https://doi.org/10.1002/j.2158-1592.2007.tb00057.x
- 38. Gumiński, A., Dohn, K. (2017). LMFEA method for the identification of key determinants to improve the efficacy of a logistics operator in transport processes. Carpathian Logistics Congress, 185-196.
- 39. Gupta, S., Sharma, V. (2023, May). Effects of Quantum computing on Businesses. 4th International Conference on Intelligent Engineering and Management (ICIEM). IEEE, pp. 1-6. https://doi.org/10.1109/iciem59379.2023.10166880
- 40. Gyongyosi, L., Imre, S. (2019). A survey on quantum computing technology. Computer Science Review, 31, 51-71. https://doi.org/10.1016/j.cosrev.2018.11.002
- 41. Herold, D.M., Nowicka, K., Pluta-Zaremba, A., Kummer, S. (2021). COVID-19 and the pursuit of supply chain resilience: Reactions and “lessons learned” from logistics service providers (LSPs). Supply Chain Management: An International Journal, 26(6), 702-714. https://doi.org/10.1108/scm-09-2020-0439
- 42. Hofmann, E., Osterwalder, F. (2017). Third-party logistics providers in the digital age: towards a new competitive arena? Logistics, 1(2), 9. https://doi.org/10.3390/ logistics1020009
- 43. Hu, Y., Tang, F., Chen, J., Wang, W. (2021). Quantum-enhanced reinforcement learning for control: a preliminary study. Control Theory and Technology, 19, 455-464. https://doi.org/10.1007/s11768-021-00063-x
- 44. Huang, H.L., Zhao, Q., Ma, X., Liu, C., Su, Z.E., Wang, X.L., Pan, J.W. (2017). Experimental blind quantum computing for a classical client. Physical review letters, 119(5), 050503. https://doi.org/10.1103/physrevlett.119.050503
- 45. Huang, Z., Qian, L., Cai, D. (2022, June). Analysis on the recent development of quantum computer and quantum neural network technology. IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, pp. 680-684. https://doi.org/10.1109/icaica54878.2022.9844614
- 46. Hulianytskyi, L., Korolyov, V., Khodzinskyi, O. (2021). Solving the Problem of Vehicle Routing on Modern Quantum-Classical Cloud Services. IT&I, pp. 281-289. https://doi.org/10.34229/2707-451x.23.2.3
- 47. Humble, T. (2018). Consumer applications of quantum computing: A promising approach for secure computation, trusted data storage, and efficient applications. IEEE Consumer Electronics Magazine, 7(6), 8-14. https://doi.org/10.1109/mce.2017.2755298
- 48. Jaeger, G. (2007). Classical and quantum computing. Quantum Information: An Overview, 203-217. https://doi.org/10.1007/978-0-387-36944-0_13
- 49. Jahin, M.A., Shovon, M.S.H., Islam, M.S., Shin, J., Mridha, M.F., Okuyama, Y. (2023). QAmplifyNet: Pushing the Boundaries of Supply Chain Backorder Prediction Using Interpretable Hybrid Quantum-Classical Neural Network. arXiv preprint arXiv: 2307.12906. https://doi.org/10.1038/s41598-023-45406-7
- 50. Jain, E., Lamba, J. (2023). Blockades of blockchain in supply chain management. Blockchain in a Volatile-Uncertain-Complex-Ambiguous World. Elsevier, pp. 197-218. https://doi.org/10.1016/b978-0-323-89963-5.00005-8
- 51. Jain, S. (2021). Solving the traveling salesman problem on the d-wave quantum computer. Frontiers in Physics, 646. https://doi.org/10.3389/fphy.2021.760783
- 52. Jiang, H., Shen, Z.J.M., Liu, J. (2022, December). Quantum Computing Methods for Supply Chain Management. IEEE/ACM 7th Symposium on Edge Computing (SEC). IEEE, pp. 400-405. https://doi.org/10.1109/sec54971.2022.00059
- 53. Jones, J.A., Mosca, M., Hansen, R.H. (1998). Implementation of a quantum search algorithm on a quantum computer. Nature, 393(6683), 344-346. https://doi.org/10.1038/30687
- 54. Jum’a, L., Basheer, M.E. (2023). Analysis of Warehouse Value-Added Services Using Pareto as a Quality Tool: A Case Study of Third-Party Logistics Service Provider. Administrative Sciences, 13(2), 51. https://doi.org/10.3390/admsci13020051
- 55. Karagiannis, G., Minis, I., Arampantzi, C., Dikas, G. (2023). Warehousing and distribution network design from a Third-Party Logistics (3PL) company perspective. International Journal of Production Research, 1-11. https://doi.org/10.1080/00207543.2023.2248280
- 56. Kavokin, A., Liew, T.C., Schneider, C., Lagoudakis, P.G., Klembt, S., Hoefling, S. (2022). Polariton condensates for classical and quantum computing. Nature Reviews Physics, 4(7), 435-451. https://doi.org/10.1038/s42254-022-00447-1
- 57. Kawa, A., Pieranski, B., Zdrenka, W. (2018). Dynamic configuration of same-day delivery in E-commerce. Modern Approaches for Intelligent Information and Database Systems, 305-315. https://doi.org/10.1007/978-3-319-76081-0_26
- 58. Kjamilji, A., Levi, A., Savaş, E., Güney, O.B. (2021, October). Secure matrix operations for machine learning classifications over encrypted data in post quantum industrial IoT. International Symposium on Networks, Computers and Communications (ISNCC). IEEE, pp. 1-8. https://doi.org/10.1109/isncc52172.2021.9615794
- 59. Klimas, P., Czakon, W., Kraus, S., Kailer, N., Maalaoui, A. (2021). Entrepreneurial failure: a synthesis and conceptual framework of its effects. European Management Review, 18(1), 167-182. https://doi.org/10.1111/emre.12426
- 60. Kmiecik, M. (2022). Logistics coordination based on inventory management and transportation planning by third-party logistics (3PL). Sustainability, 14(13), 8134. https://doi.org/10.3390/su14138134
- 61. Kramarz, M., & Slupina, M. (2017). Assessment of customer satisfaction in logistic operators. Logistics and Transport, 35.
- 62. Li, C., Shen, H., Shi, X., Liang, H. (2023). Quantum Secure Undeniable Signature for Blockchain-Enabled Cold-Chain Logistics System. Computers, Materials & Continua, 75(2). https://doi.org/10.32604/cmc.2023.037796
- 63. Liu, D. (2021, September). Principles and Characteristics of Quantum Computing. Journal of Physics: Conference Series, Vol. 2014, No. 1, p. 012012. IOP Publishing. https://doi.org/10.1088/1742-6596/2014/1/012012
- 64. Lo, S.C., Shih, Y.C. (2021). A genetic algorithm with quantum random number generator for solving the pollution-routing problem in sustainable logistics management. Sustainability, 13(15), 8381. https://doi.org/10.3390/su13158381
- 65. Longo, R., Mascia, C., Meneghetti, A., Santilli, G., Tognolini, G. (2022). Adaptable Cryptographic Primitives in Blockchains via Smart Contracts. Cryptography, 6(3), 32. https://doi.org/10.3390/cryptography6030032
- 66. Lu, S., Li, X. (2021, October). Lightweight Grouping-Proof for Post-Quantum RFID Security. IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI). IEEE, pp. 49-58. https://doi.org/10.1109/swc50871.2021.00017
- 67. Małkus, T., Wawak, S. (2015). Information security in logistics cooperation. Acta logistica, 2(1), 9-14. https://doi.org/10.22306/al.v2i1.32
- 68. Mangan, J., Lalwani, C. (2016). Global logistics and supply chain management. John Wiley & Sons.
- 69. Marasco, A. (2008). Third-party logistics: A literature review. International Journal of production economics, 113(1), 127-147. https://doi.org/10.1016/j.ijpe.2007.05.017
- 70. Margaria, T., Schieweck, A. (2022). Active Behavior Mining for Digital Twins Extraction. IT Professional, 24(4), 74-80. https://doi.org/10.1109/mitp.2022.3193044
- 71. Masuda, K., Tsuyumine, Y., Kitada, T., Hachikawa, T., Haga, T. (2023). Optimization of Delivery Plan by Quantum Computing. Optimization, 85, 1. https://doi.org/10.1007/978-3-030-54621-2_848-1
- 72. Masum, M., Nazim, M., Faruk, M.J.H., Shahriar, H., Valero, M., Khan, M.A.H., Ahamed, S.I. (2022, June). Quantum Machine Learning for Software Supply Chain Attacks: How Far Can We Go? IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, pp. 530-538. https://doi.org/10.1109/compsac54236.2022.00097
- 73. Memon, M.A., Letouzey, A., Karray, M.H., Archimède, B. (2014). Collaborating multiple 3PL enterprises for ontology-based interoperable transportation planning. Enterprise Interoperability VI: Interoperability for Agility, Resilience and Plasticity of Collaborations. Springer International Publishing, pp. 319-329. https://doi.org/10.1007/978-3-319-04948-9_27
- 74. Mohanty, J.P., Swain, A., Mahapatra, K. (2019, December). Headway in quantum domain for machine learning towards improved artificial intelligence. IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). IEEE, pp. 145-149. https://doi.org/10.1109/ises47678.2019.00040
- 75. Moskvin, V.S. (2022, November). Post-Quantum Digital Signatures in Transport Documents. Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED). IEEE, pp. 1-5. https://doi.org/10.1109/ tirved56496.2022.9965491
- 76. Mou, J., Wang, S. (2023). Value-Added Service for Fashion Product Supply Chain with Overseas Warehouse Logistics Outsourcing. Mathematical Problems in Engineering. https://doi.org/10.1155/2023/8798358
- 77. Nagaiah, B. (2022). Futuristic Technologies for Supply Chain Management: A Survey. In: Quantum and Blockchain for Modern Computing Systems: Vision and Advancements: Quantum and Blockchain Technologies: Current Trends and Challenges (pp. 283-309). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-04613-1_10
- 78. Osaba, E., Villar-Rodriguez, E., Oregi, I. (2022). A systematic literature review of quantum computing for routing problems. IEEE Access, 10, 55805-55817. https://doi.org/10.1109/ access.2022.3177790
- 79. Polikarpov, P.V., Uvarov, N.K., Khomonenko, A.D. (2021). Characteristics of Ecosystems of Quantum Computing and Prospects for Their Use in Transport. Intelligent Transport Systems and Transport Security, 1, 33-41. https://doi.org/10.1109/itqmis53292. 2021.9642830
- 80. Portenoy, J., West, J.D. (2020). Constructing and evaluating automated literature review systems. Scientometrics, 125(3), 3233-3251. https://doi.org/10.1007/s11192-020-03490-w
- 81. Qu, P. (2022, September). Logistics Vehicle Distribution Route Planning and Management System Based on Quantum Genetic Algorithm. International Conference on Cognitive based Information Processing and Applications. Singapore: Springer Nature Singapore, pp. 471-478. https://doi.org/10.1007/978-981-19-9373-2_51
- 82. Rad, F.F. (2021). From Far East to Baltic Sea: Impact of Quantum Computers on Supply Chain Users of Blockchain. International Journal of Enterprise Information Systems (IJEIS), 17(4), 85-97. https://doi.org/10.4018/ijeis.2021100105
- 83. Rahaman, M., Islam, M.M. (2015). A review on progress and problems of quantum computing as a service (QcaaS) in the perspective of cloud computing. Global Journal of Computer Science and Technology, 15(4). https://doi.org/10.5815/ijmsc.2016.01.02
- 84. Rana, R., Thingbaijam, R., Seshadri, J., Shah, P., Sinha, A., Poojary, S. (2022, October). Quantum Powered Employee Transport and Agri-Logistics Optimization. International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). IEEE, pp. 1-6. https://doi.org/10.1109/tqcebt54229.2022.10041701
- 85. Sanchez Rodrigues, V., Kumar, M. (2019). Synergies and misalignments in lean and green practices: a logistics industry perspective. Production Planning & Control, 30(5-6), 369-384. https://doi.org/10.1080/09537287.2018.1501812
- 86. Saniuk, S., Witkowski, K., Krawczyk, S. (2011). Prototyping of manufacturing production networks in conditions of logistical constraints. Management, 15(2), 316-326.
- 87. Sarkar, A., Chatterjee, S.R., Chakraborty, M. (2022, December). Dynamic S-box with Reversible Gates for both Classical and Quantum Computer. IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). IEEE, pp. 1-6. https://doi.org/10.1109/upcon56432.2022.9986426
- 88. Satamraju, K.P., Malarkodi, B.J.C.C. (2021). A decentralized framework for device authentication and data security in the next generation internet of medical things. Computer Communications, 180, 146-160. https://doi.org/10.1016/j.comcom.2021.09.012
- 89. Silva, H., António, N., Bacao, F. (2022, August). A Rapid Semi-automated Literature Review on Legal Precedents Retrieval. EPIA Conference on Artificial Intelligence. Cham: Springer International Publishing, pp. 53-65, https://doi.org/10.1007/978-3-031-16474-3_5
- 90. Skowron-Grabowska, B. (2007). Development of logistics centres in Poland. http://www. oeconomica. uab. ro/upload/lucrari/9, 20072(2).
- 91. Slane, F.A. (2019). Future business models for space companies. Proceedings of the International Astronautical Congress (IAC), 2019-October, art. no. IAC-19_E3_6_6_x54800. https://doi.org/10.1007/978-3-031-39940-4_2
- 92. Ślusarczyk, B., Tvaronavičienė, M., Haque, A.U., Oláh, J. (2020). Predictors of Industry 4.0 technologies affecting logistic enterprises’ performance: International perspective from economic lens. Technological and economic development of economy, 26(6), 1263-1283. https://doi.org/10.3846/tede.2020.13376
- 93. Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of business research, 104, 333-339. https://doi.org/10.1016/ j.jbusres.2019.07.039
- 94. Somaroo, S., Tseng, C.H., Havel, T.F., Laflamme, R., Cory, D.G. (1999). Quantum simulations on a quantum computer. Physical review letters, 82(26), 5381. https://doi.org/10.1103/physrevlett.82.5381
- 95. Sotelo, R. (2021). Quantum computing entrepreneurship and IEEE TEMS. IEEE Engineering Management Review, 49(3), 26-29. https://doi.org/10.1109/emr.2021. 3098260
- 96. Tan, K.C., Bhowmick, D., Sengupta, P. (2022). Sign-problem free quantum stochastic series expansion algorithm on a quantum computer. npj Quantum Information, 8(1), 44. https://doi.org/10.1038/s41534-022-00555-x
- 97. Thakkar, J., Deshmukh, S.G., Gupta, A.D., Shankar, R. (2005, June). Selection of third-party logistics (3PL): A hybrid approach using interpretive structural modeling (ISM) and analytic network process (ANP). Supply Chain Forum: International Journal, Vol. 6, No. 1. https://doi.org/10.1080/16258312.2005.11517137
- 98. Tsang, Y.P., Lee, C.K.M. (2022). Artificial intelligence in industrial design: A semi-automated literature survey. Engineering Applications of Artificial Intelligence, 112, 104884. https://doi.org/10.1016/j.engappai.2022.104884
- 99. Vasiliauskas, A.V., Jakubauskas, G. (2007). Principle and benefits of third party logistics approach when managing logistics supply chain. Transport, 22(2), 68-72. https://doi.org/10.3846/16484142.2007.9638101
- 100. Vela, D., Sharp, A., Zhang, R., Nguyen, T., Hoang, A., Pianykh, O. S. (2022). Temporal quality degradation in AI models. Scientific Reports, 12(1), 11654. https://doi.org/10.1038/s41598-022-15245-z
- 101. Verduro, J., Rodríguez, M., Piattini, M. (2021). Software Quality Issues in Quantum Information Systems. Q-SET@ QCE, pp. 54-59. https://doi.org/10.1007/s11219-021-09574-x
- 102. Witkowski, J., Kiba-Janiak, M. (2014). The role of local governments in the development of city logistics. Procedia-Social and Behavioral Sciences, 125, 373-385. https://doi.org/10.1016/j.sbspro.2014.01.1481
- 103. Xu, G., Gao, H. (2009). Using Real-Coded Quantum Evolutionary Algorithm in Competitive Location Problem of Logistics Distribution Center. Logistics: The Emerging Frontiers of Transportation and Development in China, pp. 3270-3276. https://doi.org/10.1061/40996(330)480
- 104. Yarkoni, S., Huck, A., Schülldorf, H., Speitkamp, B., Tabrizi, M.S., Leib, M., Neukart, F. (2021). Solving the shipment rerouting problem with quantum optimization techniques. Computational Logistics: 12th International Conference, ICCL 2021, Enschede, The Netherlands, September 27-29, 2021, Proceedings, 12 Springer International Publishing, pp. 502-517. https://doi.org/10.1007/978-3-030-87672-2_33
- 105. Zaidi, T., Sushma, B.S. (2022). An Overview of Future Applications of Quantum Computing. Artificial Intelligence, Machine Learning and Blockchain in Quantum Satellite. Drone and Network, 127-138. https://doi.org/10.1201/9781003250357-8
- 106. Zajac, M., Dang, M., Störl, U. (2022). Implementation Aspects for Linking Data in Hybrid Quantum Applications. Informatik. https://doi.org/10.1109/qsw55613. 2022.00021
- 107. Zalka, C. (1998). Simulating quantum systems on a quantum computer. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1969), 313-322. https://doi.org/10.1098/rspa.1998.0162
- 108. Zaman, A., Morrell, H.J., Wong, H.Y. (2023). A Step-by-Step HHL Algorithm Walkthrough to Enhance Understanding of Critical Quantum Computing Concepts. IEEE Access. https://doi.org/10.1109/access.2023.3297658
- 109. Zhao, Y. (2023). Demonstration and Implementation of Quantum Computing in Cryptanalysis. Highlights in Science, Engineering and Technology, 38, 431-436. https://doi.org/10.54097/hset.v38i.5855
- 110. Zhou, H., Wang, Q., Wang, L., Zhao, X., Feng, G. (2023). Digitalization and third-party logistics performance: exploring the roles of customer collaboration and government support. International Journal of Physical Distribution & Logistics Management. https://doi.org/10.1108/ijpdlm-12-2021-0532
- 111. Zhu, H., Wang, R., Liu, J. (2018). A Lightweight RFID Authentication Protocol using Qubits against Relay Attack. J. Inf. Hiding Multim. Signal Process., 9(4), 874-883. https://doi.org/10.3390/s18030760
- 112. Zhu, L., Tang, H.L., Barron, G.S., Calderon-Vargas, F.A., Mayhall, N.J., Barnes, E., Economou, S.E. (2022). Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. Physical Review Research, 4(3), 033029. https://doi.org/10.1103/physrevresearch.4.033029
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41eba3fb-80e0-4ad0-9efe-a64ca035655a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.