PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural optimization coupled with materials selection for stiffness improvement

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An application of a Finite Element Model updating is presented in this paper. Two Finite Element models were considered: a reinforced plate and a thin-walled beam. The two parts were numerically calculated in ANSYS Mechanical APDL and MATLAB programs. ANSYS performs Finite Element calculations, and a MATLAB programming code was used to control the optimization procedure. Geometric variables were chosen, to evaluate the value of the defined objective function. The material was picked using available selection charts, to find the most adequate one for the study. It has been concluded that the transveral displacement of the models modified by the optimization process decreased sharply in relation to the original state.
Rocznik
Strony
831--844
Opis fizyczny
Bibliogr. 36 poz., il. kolor., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
  • Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
autor
  • Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź
Bibliografia
  • [1] Branco, C.M., Ferreira, J.M., Costa, J.D., Ribeiro, A.S.: Projecto de Órgãos de Máquinas, Fundação Calouste Gulbenkian, Lisboa, Portugal, 2005.
  • [2] De Meireles, J.F.: Análise dinámica de estruturas por modelos de elementos finitos identificados experimentalmente. PhD Thesis, University of Minho, 2007.
  • [3] Bin, X., Nan, C. and Huajun, C.: An integrated method of multi-objective optimization for complex mechanical structure, Advances in Engineering Software, 41, 277-285, 2010.
  • [4] Brill, E.D., Chang, S-Y and Hopkins, L.D.: Modeling to generate alternatives: The HSJ approach and an illustration using a problem in land use planning. Manage Sci., 28(221), 1982.
  • [5] Brill, E.D., Flach, J.M., Hopkins, L.D. and Ranjithan, S.: MGA: A decision support system for complex, incompletely defined problems. IEEE Trans. Syst. Man. Cybern., 20(745), 1990.
  • [6] Baugh, J.W., Caldwell, S.C. and Brill, E.D.: A mathematical programming approach for generating alternatives in discrete structural optimization, Eng. Optim., 28(1), 1997.
  • [7] Zarate, B.A., Caicedo, J.M.: Finite element model updating: Multiple alternatives. Engineering Structures, 30, 3724-3730, 2008.
  • [8] Bakir, P.G., Reynders, E., and De Roeck G.: An improved finite element model updating method by the global optimization technique Coupled Local Minimizers, Computers and Structures, 86, 1339-1352, 2008.
  • [9] Kalanta, S., Atkociunas, J. and Venskus, A.: Discrete optimization problems of the steel bar structures. Engineering Structures, 31, 1298-1304, 2009.
  • [10] Silva, H.M., De Meireles, J.F.: Determination of the Material/Geometry of the section most adequate for a static loaded beam subjected to a combination of bending and torsion. Materials Science Forum, 730-732, 507-512, 2013.
  • [11] Silva, H.M.: Determination of the Material/Geometry of the section most adequate for a static loaded beam subjected to a combination of bending and torsion. MSc Thesis, University of Minho, 2011.
  • [12] Lee, J., Kim, S-M., Park, H-S. and Woo, B-H.: Optimum design of cold-formed steel channel beams using micro Genetic Algorithm, Engineering Structures, 27, 17-24, 2005.
  • [13] Liu, H., Igusa, T. and Schafer, B.W.: Knowledge-based global optimization of cold-formed steel columns, Thin-Walled Structures, 42, 785-801, 2004.
  • [14] Magnucka-Blandzi, E., Magnucki, K.: Buckling and optimal design of coldformed thin-walled beams: Review of selected problems, Thin-Walled Structures, 49, 554-561, 2011.
  • [15] Leng, J., Guest, J.K. and Schafer, B.W.: Shape optimization of cold-formed steel columns, Thin-Walled Structures, 49, 1492-1503, 2011.
  • [16] Theofanous, M., Chan, T.M. and Gardner, L.: Structural response of stainless steel oval hollow section compression members, Engineering Structures, 31, 922-934, 2009.
  • [17] Lagaros, N.D., Psarras, L.D., Papadrakakis, M. and Panagiotou, G.: Optimum design of steel structures with web openings, Engineering Structures, 30, 2528-2537, 2008.
  • [18] Tsavdaridis, K.D. and D'Mello, C.: Optimisation of novel elliptically-based web opening shapes of perforated steel beams, Journal of Constructional Steel Research, 76, 39-53, 2012.
  • [19] McKinstray, R., Lim, J.B.P., Tanyimboh, T.T., Phan D.T. and Sha, W.: Optimal design of long-span steel portal frames using fabricated beams, Journal of Constructional Steel Research, 104, 104-114, 2015.
  • [20] Tran, T., Li, L-Y.: Global optimization of cold-formed steel channel sections. Thin-Walled Structures, 44, 399-406, 2006.
  • [21] Schittkowski, K.: NLQPL: A FORTRAN-Subroutine Solving Constrained. Nonlinear Programming Problems, Annals of Operations Research, 5, 485-500, 1985.
  • [22] Biggs, M.C.: Constrained Minimization Using Recursive Quadratic Programming, Towards Global Optimization. in: LCW Dixon and GP Szergo, eds. North-Holland 341349, 1975.
  • [23] Han, S.P.: A Globally Convergent Method for Nonlinear Programming, Journal of Optimization Theory and Applications, 22(297), 1977.
  • [24] Powell, M.J.D.: The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations, Nonlinear Programming 3, Mangasarian O.L., Meyer R.R. and Robinson S.M., eds., Academic Press, 1978a.
  • [25] Powell, M.J.D.: A Fast Algorithm for Nonlinearly Constrained Optimization Calculations, Numerical Analysis, GA Watson ed., Lecture Notes in Mathematics, Springer Verlag, 630, 1978b.
  • [26] Fletcher, R.: Practical Methods of Optimization, John Wiley and Sons, 1987.
  • [27] Gill, P.E., Murray, W. and Wright, M.H.: Practical Optimization, London, Academic Press, 1981.
  • [28] Powell, M.J.D.: Variable Metric Methods for Constrained Optimization. Mathematical Programming: The State of the Art, Bachem A., Grotschel M. and Korte B. eds. Springer Verlag, 288-311, 1983.
  • [29] Hock, W., Schittkowski, K.A.: Comparative Performance Evaluation of 27 Nonlinear Programming Codes, Computing, 30(335), 1983.
  • [30] http://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimizationalgorithms. html. Accessed: 11.03.2016.
  • [31] http://www.mathworks.com/help/optim/ug/fmincon.html. Accessed: 11.3.2016.
  • [32] http://www.mathworks.com/help/optim/ug/optimization-theoryoverview. html#bqa_ jby. Accessed: 11.3.2016.
  • [33] Beer, F.P.Jr., Johnston, E.R., DeWolf, J.T.: Mechanics of Materials, 3rd Edition McGraw-Hill, 2001.
  • [34] Barber, J.R.: Intermediate Mechanics of Materials, 2nd Edition, McGraw-Hill, 2000.
  • [35] Massonnet, C.: Resistance des matriaux, DUNOD, deuxieme edition, Paris, 1968.
  • [36] http://www-materials.eng.cam.ac.uk/mpsite/interactive charts/default.html. Accessed: 4.7.2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41e77fa5-4005-475c-a137-cb632fb2fad0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.