PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hardware implementation of a Takagi-Sugeno neuro-fuzzy system optimized by a population algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the last several decades, neuro-fuzzy systems (NFS) have been widely analyzed and described in the literature because of their many advantages. They can model the uncertainty characteristic of human reasoning and the possibility of a universal approximation. These properties allow, for example, for the implementation of nonlinear control and modeling systems of better quality than would be possible with the use of classical methods. However, according to the authors, the number of NFS applications deployed so far is not large enough. This is because the implementation of NFS on typical digital platforms, such as, for example, microcontrollers, has not led to sufficiently high performance. On the other hand, the world literature describes many cases of NFS hardware implementation in programmable gate arrays (FPGAs) offering sufficiently high performance. Unfortunately, the complexity and cost of such systems were so high that the solutions were not very successful. This paper proposes a method of the hardware implementation of MRBF-TS systems. Such systems are created by modifying a subclass of Takagi-Sugeno (TS) fuzzy-neural structures, i.e. the NFS group functionally equivalent to networks with radial basis functions (RBF). The structure of the MRBF-TS is designed to be well suited to the implementation on an FPGA. Thanks to this, it is possible to obtain both very high computing efficiency and high accuracy with relatively low consumption of hardware resources. This paper describes both, the method of implementing MRBFTS type structures on the FPGA and the method of designing such structures based on the population algorithm. The described solution allows for the implementation of control or modeling systems, the implementation of which was impossible so far due to technical or economic reasons.
Rocznik
Strony
243--266
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Department of Computer Engineering, Czestochowa University of Technology, al. Armii Krajowej 36, 42-200 Częstochowa, Poland
  • Department of Computer Engineering, Czestochowa University of Technology, al. Armii Krajowej 36, 42-200 Częstochowa, Poland
  • Management Department University of Social Sciences, 90-113 Łód´z
  • Information Technology Institute University of Social Sciences, 90-113 Łód´z
  • Clark University Worcester, MA 01610, USA
  • Meiji University, Tama-ku, Kawasaki, 214-8571 Japan
Bibliografia
  • [1] J. R. Jang and C. T. Sun, “Functional equivalence between radial basis function networks and fuzzy inference systems,” IEEE Trans Neural Netw, vol. 4, no. 1, pp. 156–159, 1993.
  • [2] A. Przybył and M. J. Er, “The method of hardware implementation of fuzzy systems on FPGA,” in Artificial Intelligence and Soft Computing (L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, eds.), (Cham), pp. 284–298, Springer International Publishing, 2016.
  • [3] A. Przybył, Algorytmy inteligencji obliczeniowej dla rozproszonych środowisk sieciowych. EXIT, 2017.
  • [4] A. Przybył and M. J. Er, “A method for design of hardware emulators for a distributed network environment,” in Artificial Intelligence and Soft Computing (L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, eds.), (Cham), pp. 318–336, Springer International Publishing, 2017.
  • [5] J. Detrey and F. de Dinechin, “Parameterized floating-point logarithm and exponential functions for FPGAs,” Microprocessors and Microsystems, vol. 31, no. 8, pp. 537–545, 2007. Special Issue on FPGA-based Reconfigurable Computing (3).
  • [6] P. Echeverria and M. Lopez-Vallejo, “An FPGA implementation of the powering function with single precision floating-point arithmetic,” in High Performance Digital Design in Reconfigurable Architectures, pp. 17–26, 8th Conference on Real Numbers and Computers, 2008.
  • [7] J. Kluska and Z. Hajduk, “Hardware implementation of P1-TS fuzzy rule-based systems on FPGA,” in Artificial Intelligence and Soft Computing, 12th International Conference, ICAISC, Part I, vol. 7894, pp. 282–293, 2013.
  • [8] J.-Y. Jhang, K.-H. Tang, C.-K. Huang, C.-J. Lin, and K.-Y. Young, “FPGA implementation of a functional neuro-fuzzy network for nonlinear system control,” Electronics, vol. 7, no. 8, 2018.
  • [9] M. Dendaluce Jahnke, F. Cosco, R. Novickis, J. Pérez Rastelli, and V. Gomez-Garay, “Efficient neural network implementations on parallel embedded platforms applied to real-time torque-vectoring optimization using predictions for multi-motor electric vehicles,” Electronics, vol. 8, no. 2, 2019.
  • [10] A. Brown, P. Kelly, and W. Luk, “Profiling floating point value ranges for reconfigurable implementation,” 01 2007.
  • [11] A. Agrawal, J. Choi, K. Gopalakrishnan, S. Gupta, R. Nair, J. Oh, D. A. Prener, S. Shukla, V. Srinivasan, and Z. Sura, “Approximate computing: Challenges and opportunities,” in 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–8, 2016.
  • [12] D. Han, S. Zhou, T. Zhi, Y. Wang, and S. Liu, “Float-fix: An efficient and hardware-friendly data type for deep neural network,” International Journal of Parallel Programming, vol. 47, no. 3, pp. 345–359, 2019.
  • [13] A. Przybył and J. Szczypta, “Method of evolutionary designing of FPGA-based controllers,” Przegląd Elektrotechniczny, vol. 92, no. 7, pp. 174–179, 2016.
  • [14] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43, IEEE, 1995.
  • [15] P. Dziwiński and Ł. Bartczuk, “A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 6, pp. 1140–1154, 2019.
  • [16] P. Dziwiński, Ł. Bartczuk, and J. Paszkowski, “A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm,” Journal of Artificial Intelligence and Soft Computing Research, vol. 10, pp. 95–111, 2020.
  • [17] K. Łapa, K. Cpałka, Ł. Laskowski, A. Cader, and Z. Zeng, “Evolutionary algorithm with a configurable search mechanism,” Journal of Artificial Intelligence and Soft Computing Research, vol. 10, pp. 151–171, 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41e0555d-771d-4916-8fda-4157e184b21b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.