Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Porównanie aktywności celulolitycznej modyfikowanej gleby potraktowanej Roundupem
Języki publikacji
Abstrakty
The activity of soil microorganisms affects soil fertility and structure, what leads to satisfactory crop yields, thanks to changes in the decay of organic matter. Their activity may be impaired as a result of application by farmers both fertilizers and pesticides. The degradation of cellulosic biomass represents an important part of the carbon cycle within the biosphere. Cellulolitic microorganisms are responsible for this decomposition, as they produced the enzymes of the cellulase complex. The aim of the study was to compare the cellulolytic activity of soil with Roundup and modified using urea phosphate and / or manure. The pot experiment was conducted under laboratory conditions. The studied material was brown soil (pH of 5.5) fertilized with manure and/or urea phosphate. To each earthenware vase were fed 0.5 kg of the tested soil supplemented with 1% carboxymethyl cellulose. The cellulolytic activities of soil in different experimental variants were expressed in % of C using a colorimetric Petkov method. Modification of soil cellulolytic activity varied considerably depending on the additive manure and/or urea phosphate and Roundup. The lowest soil cellulolytic activity was observed in the presence of manure and urea phosphate, and the highest in the soil with manure and Roundup. The objects of Roundup independently of the other additives urea phosphate stimulate the activity of the cellulolytic microflora compared to objects containing only urea phosphate. The presence of manure in soil treated with Roundup clearly accelerated degradation of cellulose, what can be used in agriculture in the degradation of crop residues. The study shows that pesticides and fertilizers have a big impact on cellulolytic activity in soil. Changes in cellulolytic activity can be used as an ecological indicator of soil pollution level.
Aktywność mikroorganizmów gleby wpływa na jej żyzność oraz strukturę, co pozwala uzyskać satysfakcjonujące plony, między innymi dzięki przemianom materii organicznej w próchnicę. Proces ten zachodzi w obecności różnych grup mikroorganizmów, których aktywność może być zaburzona w wyniku stosowania przez rolników zarówno nawozów sztucznych, jak i organicznych oraz pestycydów. Ważnym ogniwem w obiegu węgla w biosferze jest degradacja celulozy. Rozkład celulozy zachodzi przy udziale drobnoustrojów o aktywności celulolitycznej, które produkują enzymy kompleksu celulaz. Celem pracy było porównanie aktywności celulolitycznej gleby wzbogaconej fosforanem mocznika i/lub obornikiem po opryskaniu powszechnie stosowanym herbicydem Roundup. Doświadczenie wazonowe prowadzono w warunkach laboratoryjnych. Do badań użyto gleby brunatnej właściwej o pH 5,5, nawożonej obornikiem i/lub fosforanem mocznika, opryskanej Roundupem. Do każdego wazonu wprowadzano 0,5 kg badanej gleby wzbogaconej 1% karboksymetylocelulozy. Aktywność enzymów celulolitycznych w poszczególnych wariantach doświadczenia wyrażono w % C, wydzielonego z gleby w postaci CO2, stosując kolorymetryczną metodę Petkova. Modyfikacja gleby znacząco zmieniała aktywność celulolityczną w zależności od dodatku obornika i/lub fosforanu mocznika oraz Roundupu. Najniższą aktywność celulolityczną gleby zaobserwowano w obecności obornika i fosforanu mocznika, a najwyższą w glebie z obornikiem i Roundupem. W obiektach z Roundupem niezależnie od innych dodatków fosforan mocznika stymulował aktywność mikroflory celulolitycznej, w porównaniu do obiektów zawierających tylko fosforan mocznika. Obecność obornika w glebie opryskanej Roundupem wyraźnie przyspieszała rozkład celulozy, co można wykorzystać w rolnictwie w rozkładzie resztek pożniwnych. Badania wykazały, że pestycydy i nawozy mają duży wpływ na celulolityczną aktywność gleby. Zmiany aktywności celulolitycznej gleby można wykorzystać jako ekologiczny wskaźnik jej jakości.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
133--139
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6a, 45-035 Opole, Poland, phone +48 77 401 60 57
autor
- Department of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6a, 45-035 Opole, Poland, phone +48 77 401 60 57
autor
- Department of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6a, 45-035 Opole, Poland, phone +48 77 401 60 57
Bibliografia
- [1] Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol. 2010;101:5961-5968. DOI: 10.1016/j.biortech.2010.02.104.
- [2] Rapa P, Beermann A. Bacterial cellulase. In: Biosyntesis and Biodegradation of Cellulose. Haigler CH, Weimer PJ, editors. New York: Marcel Dekker; 1991;535-599.
- [3] Russel S, Górska EB, Wyczółkowski AI. Enzymy biorące udział w hydrolizie celulozy. [Enzymes taking part in hydrolysis of cellulose]. Acta Agrophysica, Rozpr Monografie. 2005;3:27-36. http://www.old.acta-agrophysica.org/en/monograph.html?stan=detail&paper=518.
- [4] Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66:506-577. DOI: 10.1128/MMBR.66.3.506-577.2002.
- [5] Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharide. Microbiol Mol Biol Rev. 2001;65(4):497-522. DOI: 10.1128/MMBR.65.4.497-522.2001.
- [6] Narasimha G, Sridevi A, Buddolla V, Subhosh CM, Rajasekar RB. Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr J Biotechnol. 2006;5(5):472-476. DOI: 10.5897/AJB05.224.
- [7] Sri Lakshmi A, Narasimha G. Production of cellulases by fungal cultures isolated from forest litter soil. Ann For Res. 2012;55(1):85-92. http://www.editurasilvica.ro/afr/55/1/narasimha.pdf.
- [8] Mirzaakhmedov SY, Ziyavitdinov ZF, Akhmedova ZR, Saliev AB, Ruzmetova DT, Ashurov KB, et al. Isolation, purification and enzymatic activity of cellulase components the fungus Aspergillus terreus. Chem Nat Compd. 2007;43(5):594-597. DOI: 10.1007/s10600-007-0199-6.
- [9] Immanuel G, Dhanusha R, Prema P, Palavesam A. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int J Environ Sci Technol. 2006;3(1):25-34. DOI: 10.1007/BF03325904.
- [10] Sethi S, Datta A, Gupta BL, Gupta S. Optimization of cellulase production from bacteria isolated from soil. Int Scholarly Res Notices. Biotechnol. 2013; Article ID 985685. DOI: 10.5402/2013/985685.
- [11] Deng SP, Tabatabai MA. Cellulase activity of soils. Soil Biol Biochem. 1994;26(10):1347-1354. DOI: 10.1016/0038-0717(94)90216-X.
- [12] Matsui I, Sakai Y, Matsui E, Kikuchi E, Kawarabayasi Y, Honda K. Novel substrate specificity of a membrane-bound beta-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii. Fed Europ Biochem Soc Lett. 2000;467:195-200. DOI: 10.1016/S0014-5793(00)01156-X.
- [13] Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Advanc. 2000;18(5):355-383.
- [14] Updegraff DM. Semimicro determination of cellulose in biological materials. Anal Biochem. 1969;32(3):420-424. DOI: 10.1016/S0003-2697(69)80009-6.
- [15] Updegraff DM. Utilization of cellulose from waste paper by Myrothecium verrucaria. Biotechnol Bioeng. 1971;13(1):77-97. DOI: 10.1002/bit.260130106.
- [16] Chanzy H, Hennrissat B, Vuong R. Colloidal gold labeling of 1,4-β-D-glucan cellobiohydrolase adsorbed on cellulose substrates. Fed Europ Biochem Soc Lett. 1984;172(2):193-197. DOI: 10.1016/0014-5793(84)81124-2.
- [17] Chanzy H, Henrissat B. Unidirectional degradation of valonia cellulose microcrystals subjected to cellulase action. Fed Europ Biochem Soc Lett. 1985;184:285-288. DOI: 10.1016/0014-5793(85)80623-2.
- [18] Sprey B, Bochem H.P. Electron microscopic observations of cellulose microfibrill degradation by endocellulase from Trichoderma reesei. Fed Europ Microbiol Soc Microbiol Lett. 1991;78:183-188. DOI: 10.1111/j.1574-6968.1991.tb04440.x
- [19] Petkov PD, Markova TCh. A method of studying cellulose decomposition in soil. Biologie du Sol. 1969;10:17. www.iung.pulawy.pl
- [20] Frankenberger WT, Johanson JB. Method of measuring invertase activity in soils. Plant Soil. 1983;74:301-311. DOI: 10.1007/BF02181348.
- [21] Baćmaga M, Kucharski J, Wyszkowska J. Wpływ środków ochrony roślin na aktywność mikrobiologiczną gleb. [Influence of plant protection products on the microbiological activity of soil]. J Elem. 2007;12(3):225-239. http://www.uwm.edu.pl/jelementol.
- [22] Krzyśko-Łupicka T, Grata K. Influence of Roundup on the chosen biological and chemical properties of soil. In: Chemistry for Agriculture. Chemicals in agriculture and environment. Górecki H, Dobrzański Z, Kafarski P, Zwoździak J, editors. Prague-Brussels: Wyd. Czech-Pol Trade; 2007;8:151-157. www.bch.pwr.wroc.pl.
- [23] Michalewicz W. Wpływ pestycydów stosowanych w chemicznej ochronie roślin uprawnych na niektóre właściwości biologiczne gleby [Influence of pesticides used in chemical protection of field crops on some biological properties of soil]. Roczn Gleboznaw. 1995;XLVI(1/2):53-64. http://www.degruyter.com/view/j/ssa.
- [24] Rose HT, Cavagnaro TR, Scanlant CA, Rose TJ, Vancov T, Kimber S, et al. Impact of herbicides on soil biology and function. Advanc Agronom. 2016;136:133-220. DOI: 10.1016/bs.agron.2015.11.005.
- [25] Yang JK, Zhang JJ, Yu HY, Cheng JW, Miao LH. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees. Appl Microbiol Biotechnol. 2014;98(3):1449-58. DOI: 10.1007/s00253-013-5130-4.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41df6dd5-ca51-4e3b-892b-47653ef3b44d