PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effective denoising of magnetotelluric (MT) data using a combined wavelet method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Noise interference, especially from human noise, seriously affects the quality of magnetotelluric (MT) data. Strong human noise distorts the apparent resistivity curve, known as the near-source effect, causing poor reliability of MT data inversion. Based on analyzing the frequency characteristics of human noise resulting from the surrounding environment, a new waveletbased denoising method is proposed for both synthetic and real MT data in this paper. The new technique combines multiresolution analysis with a wavelet threshold algorithm based on Bayes estimation and has a remarkable effect on denoising at all band frequencies. The multi-resolution analysis method was employed to reduce long-period noise, and a wavelet threshold algorithm was used to eliminate strong high-frequency noise. In this research, the improved algorithm was assessed via simulated experiments and field measurements with regard to the reduction in human noises. This study demonstrates that the new denoising technique can increase the signal-to-noise ratio by at least 112% and provides an extensive analysis method for mineral resource exploration.
Czasopismo
Rocznik
Strony
813--824
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
autor
  • Shanxi Engineering Vocational College, Taiyuan, China
autor
  • College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
autor
  • College of Geoexploration Science & Technology, Jilin University, Changchun, China
Bibliografia
  • 1. Cooper GRJ (2014) The automatic determination of the location and depth of contacts and dykes from aeromagnetic data. Pure Appl Geophys 171:2417–2423. https://doi.org/10.1007/s00024-014-0789-8
  • 2. Cunha CFFC, Carvalho AT, Petraglia MR, Lima ACS (2015) A new wavelet selection method for partial discharge denoising. Electr Power Syst Res 125:184–195. https://doi.org/10.1016/j.epsr.2015.04.005
  • 3. Deng JZ, Chen H, Yin CC, Zhou BH (2015) Three-dimensional electrical structures and significance for mineral exploration in the Jiujiang-Ruichang District. J Geophys 58(12):4465–4477. https://doi.org/10.6038/cjg20151211 (in Chinese)
  • 4. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inform Theory 41:613–627. https://doi.org/10.1109/18.382009
  • 5. Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90:1200–1224. https://doi.org/10.1080/01621459.1995.10476626
  • 6. Downie TR, Silverman BW (1998) The discrete multiple wavelet transform and thresholding methods. IEEE Trans Signal Process 46:2558–2561. https://doi.org/10.1109/78.709546
  • 7. Egbert GD, Booker JR (1986) Robust estimation of geomagnetic transfer functions. Geophys J Int 87:173–194. https://doi.org/10.1111/j.1365-246X.1986.tb04552.x
  • 8. Escalas M, Queralt P, Ledo J, Marcuello A (2013) Polarisation analysis of magnetotelluric time series using a wavelet-based scheme: a method for detection and characterisation of cultural noise sources. Phys Earth Planet Inter 218:31–50. https://doi.org/10.1016/j.pepi.2013.02.006
  • 9. Gamble TD, Goubau WM, Clarke J (1979a) Magnetotellurics with a remote magnetic reference. Geophysics 44:53–68
  • 10. Gamble TD, Goubau WM, Clarke J (1979b) Error analysis for remote magnetotellurics. Geophysics 44:959–968. https://doi.org/10.1190/1.1440988
  • 11. Garcia X, Chave AD, Jones AG (1997) Robust processing of magnetotelluric data from the all auroral zone. J Geomagn Geoelectr 49:1451–1468. https://doi.org/10.5636/jgg.49.1451
  • 12. Goubau WM, Gamble TD, Clarke J (1978) Magnetotelluric data analysis: removal of bias. Geophysics 43:1157–1166. https://doi.org/10.1190/1.1440885
  • 13. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci 454:903–995. https://doi.org/10.1098/rspa.1998.0193
  • 14. Johnstone IM, Silverman BW (2005) Ebayesthresh: R programs for empirical Bayes thresholding. J Stat Softw 12:1–38. https://doi.org/10.18637/jss.v012.i08
  • 15. Kim IS (2011) Fault detection algorithm of the photovoltaic system using wavelet transform. In: 2010 India international conference on power electronics (IICPE). IEEE, pp 1–6. https://doi.org/10.1109/iicpe.2011.5728156
  • 16. Liu B, Rong MT, Liu WJ, Wang RL (2012) A fast and accurate algorithm of noise variance estimation. Inf Technol 1:8–11. https://doi.org/10.13274/j.cnki.hdzj.2012.01.034
  • 17. Mallat S (1996) Wavelets for a vision. Proc IEEE 84:604–614. https://doi.org/10.1109/5.488702
  • 18. Mamgain P, Chaudhary S (2015) Implementation of adaptive wavelet thresholding and nonlocal means for medical image enhancement for noise reduction. IJCTT 24:23–28. https://doi.org/10.14445/22312803/IJCTT-V24P105
  • 19. Marmolin H (1986) Subjective mse measures. IEEE Trans Syst, Man, Cybern 16:486–489. https://doi.org/10.1109/TSMC.1986.4308985
  • 20. Myint SW, Zhu T, Zheng B (2015) A novel image classification algorithm using overcomplete wavelet transforms. IEEE Geosci Remote Sens Lett 12:1232–1236. https://doi.org/10.1109/LGRS.2015.2390133
  • 21. Neukirch M, Garcia X (2014) Nonstationary magnetotelluric data processing with instantaneous parameter. J Geophys Res Solid Earth 119:1634–1654. https://doi.org/10.1002/2013JB010494
  • 22. Spichak VV (2012) Evaluation of the feasibility of recovering the magma chamber’s parameters by 3D Bayesian statistical inversion of synthetic MT data. Acta Geophys 60:942–958. https://doi.org/10.2478/s11600-012-0008-x
  • 23. Trad DO, Travassos JM (2000) Wavelet filtering of magnetotelluric data. Geophysics 65:482–491. https://doi.org/10.1190/1.1444742
  • 24. Weckmann U, Magunia A, Ritter O (2005) Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme. Geophys J Int 161:635–652. https://doi.org/10.1111/j.1365-246X.2005.02621.x
  • 25. Xu ZM (2012) Study of magnetotelluric interference noise of Luzong. Central South University
  • 26. Zhang G, Tuo XG, Wang XB, Zhang W, Luo W (2016) Analysis on remote reference magnetotelluric effect under different parameters. Prog Geoghys 31(6):2458–2466. https://doi.org/10.6038/pg20160614 (in Chinese)
  • 27. Zhu W, Fan CS, Yao DW, Wang G (2011) Noise source analysis and noise characteristics study of MT in an ore concentration area. Geophys Geochem Explor 35(5):658–662 (in Chinese)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41da638a-d911-47c1-bd5a-16e7a96f7083
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.