Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We introduce and investigate a topological form of Stäckel’s 1907 characterization of finite sets, with the goal of obtaining an interesting notion that characterizes usual compactness (or a close variant of it). Define a T2 topological space (X,τ) to be Stäckel-compact if there is some linear ordering ≺ on X such that every non-empty τ-closed set contains a ≺-least and a ≺-greatest element. We find that compact spaces are Stäckel-compact but not conversely, and Stäckel-compact spaces are countably compact. The equivalence of Stäckel-compactness with countable compactness remains open, but our main result is that this equivalence holds in scattered spaces of Cantor–Bendixson rank <ω2 under ZFC. Under V=L, the equivalence holds in all scattered spaces.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
67--80
Opis fizyczny
Bilbiogr. 8 poz.
Twórcy
autor
- Department of Mathematics, University of Detroit Mercy, Detroit, MI 48221, USA
Bibliografia
- [1] R. Engelking, General Topology, rev. ed., Heldermann, 1989.
- [2] T. Jech, Set Theory, 3rd ed., Springer, 2002.
- [3] J. Novák, On the Cartesian product of two compact spaces, Fund. Math. 40 (1953), 106–112.
- [4] E. Schimmerling and M. Zeman, Square in core models, Bull. Symbolic Logic 7 (2001), 305–314.
- [5] I. Souldatos, J. Hamkins, and T. Eisworth, Disjoint stationary sets that reflect, Math Overflow URL http://mathoverflow.net/questions/111327/disjoint-stationary-sets-that-reflect
- [6] P. Stäckel, Zu H. Webers Elementarer Mengenlehre, Jahresber. Deutsch. Math.-Verein. 16 (1907), 425–428.
- [7] P. Suppes, Axiomatic Set Theory, Dover, 1972.
- [8] T. Tao, Compactness and compactification, in: T. Gowers (ed.),
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41d9dbf6-8c85-4c97-ad61-7f7782a2adf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.