PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Useful energy prediction model of a Lithium-ion cell operating on various duty cycles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the subject of the prediction of useful energy during the cycling of a lithium-ion cell (LIC), using machine learning-based techniques. It was demonstrated that depending on the combination of cycling parameters, the useful energy (RUEc) that can be transferred during a full cycle is variable, and also three different types of evolution of changes in RUEc were identified. The paper presents a new non-parametric RUEc prediction model based on Gaussian process regression. It was proven that the proposed methodology enables the RUEc prediction for LICs discharged, above the depth of discharge, at a level of 70% with an acceptable error, which is confirmed for new load profiles. Furthermore, techniques associated with explainable artificial intelligence were applied to determine the significance of model input parameters – the variable importance method – and to determine the quantitative effect of individual model parameters (their reciprocal interaction) on RUEc – the accumulated local effects model of the first and second order.
Rocznik
Strony
317--329
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Control, Robotics and Electrical Engineering, ul. Piotrowo 3a, 60-965 Poznan, Poland
Bibliografia
  • 1. Apley D W, Zhu J. Visualizing the effects of predictor variables in black box supervised learning models. Journal of the Royal Statistical Society. Series B: Statistical Methodology 2020; 82(4): 1059-1086, https://doi.org/10.1111/rssb.12377.
  • 2. Belt J, Utgikar V, Bloom I. Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes. Journal of Power Sources 2011; 196(23): 10213-10221, https://doi.org/10.1016/j.jpowsour.2011.08.067.
  • 3. Bloom I, Cole B W, Sohn J J et al. An accelerated calendar and cycle life study of Li-ion cells. Journal of Power Sources 2001; 101(2): 238-247, https://doi.org/10.1016/S0378-7753(01)00783-2.
  • 4. Broussely M, Biensan P, Bonhomme F et al. Main aging mechanisms in Li ion batteries. Journal of Power Sources 2005; 146(1-2): 90-96, https://doi.org/10.1016/j.jpowsour.2005.03.172.
  • 5. Burzyński D, Kasprzyk L. A novel method for the modeling of the state of health of lithium-ion cells using machine learning for practical applications. Knowledge-Based Systems 2021; 219: 106900, https://doi.org/10.1016/j.knosys.2021.106900.
  • 6. Burzyński D, Pietracho R, Kasprzyk L, Tomczewski A. Analysis and Modeling of the Wear-Out Process of a Lithium-Nickel-Manganese-Cobalt Cell during Cycling Operation under Constant Load Conditions. Energies 2019; 12(20): 3899, https://doi.org/10.3390/en12203899.
  • 7. Chen Z, Ren Y, Jansen A N et al. New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nature Communications 2013; 4: 1-8, https://doi.org/10.1038/ncomms2518.
  • 8. Diao W, Saxena S, Pecht M. Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells. Journal of Power Sources 2019; 435(June): 226830, https://doi.org/10.1016/j.jpowsour.2019.226830.
  • 9. Dong G, Zhang X, Zhang Ch, Chen Z. A method for state of energy estimation of lithium-ion batteries based on neural network model. Energy 2015; 90(1)1:879-888, https://doi.org/10.1016/j.energy.2015.07.120.
  • 10. dos Reis G, Strange C, Yadav M, Li S. Lithium-ion battery data and where to find it. Energy and AI 2021, https://doi.org/10.1016/j.egyai.2021.100081.
  • 11. Dudézert C, Reynier Y, Duffault J M, Franger S. Fatigue damage approach applied to Li-ion batteries ageing characterization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 2016; 213: 177-189, https://doi.org/10.1016/j.mseb.2016.04.017.
  • 12. Ecker M, Gerschler J B, Vogel J et al. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. Journal of Power Sources 2012; 215: 248-257, https://doi.org/10.1016/j.jpowsour.2012.05.012.
  • 13. Edström K, Dominko R, Fichtner M et al. BATTERY 2030+ Roadmap. 2020: 83, https://doi.org/10.33063/diva2-1452023.
  • 14. El Mejdoubi A, Chaoui H, Gualous H et al. Lithium-ion batteries health prognosis considering aging conditions. IEEE Transactions on Power Electronics 2019; 34(7): 6834-6844, https://doi.org/10.1109/TPEL.2018.2873247.
  • 15. Gao Y, Jiang J, Zhang C et al. Lithium-ion battery aging mechanisms and life model under different charging stresses. Journal of Power Sources 2017; 356: 103-114, https://doi.org/10.1016/j.jpowsour.2017.04.084.
  • 16. Han X, Ouyang M, Lu L, Li J. A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation. Journal of Power Sources 2014; 268: 658-669, https://doi.org/10.1016/j.jpowsour.2014.06.111.
  • 17. Hasib S A, Islam S, Chakrabortty R K et al. A Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches, and Advanced Battery Management. IEEE Access 2021; 9: 86166-86193, https://doi.org/10.1109/ACCESS.2021.3089032.
  • 18. Haykin S, Simon S. Neural Networks and learning machines. Prentice Hall; New York 2009.
  • 19. How D N T, Hannan M A, Lipu M S H et al. State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach. IEEE Transactions on Industry Applications 2020; 56(5): 5565-5574, https://doi.org/10.1109/TIA.2020.3004294.
  • 20. Hu X, Jiang J, Cao D, Egardt B. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling. IEEE Transactions on Industrial Electronics 2016; 63(4): 2645-2656.
  • 21. Kasprzyk L. Modelling and analysis of dynamic states of the lead-acid batteries in electric vehicles. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19(2): 229-236, https://doi.org/10.17531/ein.2017.2.10.
  • 22. Kasprzyk L, Domeracka A, Burzyński D. Modelowanie pracy i trwałości akumulatorów litowo-jonowych w pojazdach elektrycznych. Przegląd Elektrotechniczny 2018; 1(12): 160-163, https://doi.org/10.15199/48.2018.12.34.
  • 23. Keil P, Schuster S F, Wilhelm J et al. Calendar Aging of Lithium-Ion Batteries. Journal of The Electrochemical Society 2016; 163(9): A1872- A1880, https://doi.org/10.1149/2.0411609jes.
  • 24. Li I H, Wang W Y, Su S F, Lee Y S. A merged fuzzy neural network and its applications in battery state-of-charge estimation. IEEE Transactions on Energy Conversion 2007; 22(3): 697-708, https://doi.org/10.1109/TEC.2007.895457.
  • 25. Li K, Wei F, Tseng K J, Soong B H. A Practical Lithium-Ion Battery Model for State of Energy and Voltage Responses Prediction Incorporating Temperature and Ageing Effects. IEEE Transactions on Industrial Electronics 2018; 65(8): 6696-6708, https://doi.org/10.1109/TIE.2017.2779411.
  • 26. Li X, Miao J, Ye J. Lithium-ion battery remaining useful life prediction based on grey support vector machines. Advances in Mechanical Engineering 2015; 7(12): 1-8, https://doi.org/10.1177/1687814015622327.
  • 27. Li X, Pan K, Fan G et al. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery. Journal of Power Sources 2017; 367: 202-213, https://doi.org/10.1016/j.jpowsour.2017.09.048.
  • 28. Li Y, Liu K, Foley A M et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews 2019. doi:10.1016/j.rser.2019.109254, https://doi.org/10.1016/j.rser.2019.109254.
  • 29. Li Y, Li K, Liu X, Zhang L. Fast battery capacity estimation using convolutional neural networks. Transactions of the Institute of Measurement and Control 2020, https://doi.org/10.1177/0142331220966425.
  • 30. Liu G, Ouyang M, Lu L et al. A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications. Applied Energy 2015; 149: 297-314, https://doi.org/10.1016/j.apenergy.2015.03.110.
  • 31. Liu K, Li Y, Hu X et al. Gaussian Process Regression with Automatic Relevance Determination Kernel for Calendar Aging Prediction of Lithium-Ion Batteries. IEEE Transactions on Industrial Informatics 2020; 16(6): 3767-3777, https://doi.org/10.1109/TII.2019.2941747.
  • 32. Liu K, Shang Y, Ouyang Q, Widanage W D. A Data-Driven Approach with Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery. IEEE Transactions on Industrial Electronics 2021; 68(4): 3170-3180, https://doi.org/10.1109/TIE.2020.2973876.
  • 33. Liu T, Cheng L, Pan Z, Sun Q. Cycle life prediction of lithium-ion cells under complex temperature profiles. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18(1): 25-31, https://doi.org/10.17531/ein.2016.1.4.
  • 34. Molnar C. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. Book 2019: 247.
  • 35. Motapon S N, Lachance E, Dessaint L-A, Al-Haddad K. A Generic Cycle Life Model for Lithium-Ion Batteries Based on Fatigue Theory and Equivalent Cycle Counting. IEEE Open Journal of the Industrial Electronics Society 2020; 1(August): 207-217, https://doi.org/10.1109/OJIES.2020.3015396.
  • 36. Naumann M, Spingler F, Jossen A. Analysis and modeling of cycle aging of a commercial LiFePO4/graphite cell. Journal of Power Sources 2020; 451(December 2019): 227666, https://doi.org/10.1016/j.jpowsour.2019.227666.
  • 37. Ning G, Popov B N. Cycle Life Modeling of Lithium-Ion Batteries. Journal of The Electrochemical Society 2004; 151(10): A1584, https://doi.org/10.1149/1.1787631.
  • 38. Olmos J, Gandiaga I, Saez-de-Ibarra A et al. Modelling the cycling degradation of Li-ion batteries: Chemistry influenced stress factors. Journal of Energy Storage 2021; 40(May): 102765, https://doi.org/10.1016/j.est.2021.102765.
  • 39. Pan R, Wang Y, Zhang X et al. Power capability prediction for lithium-ion batteries based on multiple constraints analysis. Electrochimica Acta 2017; 238: 120-133, https://doi.org/10.1016/j.electacta.2017.04.004.
  • 40. Pielecha I, Cieślik W, Szałek A. Operation of electric hybrid drive systems in varied driving conditions. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(1): 16-23, https://doi.org/10.17531/ein.2018.1.3.
  • 41. Pietracho R, Wenge C, Balischewski S et al. Potential of Using Medium Electric Vehicle Fleet in a Commercial Enterprise Transport in Germany on the Basis of Real-World GPS Data. Energies 2021; 14(17): 1-23, https://doi.org/10.3390/en14175327.
  • 42. Rassmussen C E, Williams Ch K. Gaussian processes for machine learning. MIT press Cambridge; 2006:1, https://doi.org/10.7551/mitpress/3206.001.0001.
  • 43. Richardson R R, Birkl C R, Osborne M A, Howey D A. Gaussian Process Regression for in Situ Capacity Estimation of Lithium-Ion Batteries. IEEE Transactions on Industrial Informatics 2019; 15(1): 127-138, https://doi.org/10.1109/TII.2018.2794997.
  • 44. Richardson R R, Osborne M A, Howey D A. Battery health prediction under generalized conditions using a Gaussian process transition model. Journal of Energy Storage 2019; 23(March): 320-328, https://doi.org/10.1016/j.est.2019.03.022.
  • 45. Safari M, Morcrette M, Teyssot A, Delacourt C. Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of The Electrochemical Society 2009; 156(3): A145, https://doi.org/10.1149/1.3043429.
  • 46. Safari M, Morcrette M, Teyssot A, Delacourt C. Life Prediction Methods for Lithium-Ion Batteries Derived from a Fatigue Approach. Journal of The Electrochemical Society 2010; 157(7): A892, https://doi.org/10.1149/1.3432560.
  • 47. Saha B, Goebel K, Poll S, Christophersen J. Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Transactions on Instrumentation and Measurement 2009; 58(2): 291-296, https://doi.org/10.1109/TIM.2008.2005965.
  • 48. Schmalstieg J, Käbitz S, Ecker M, Sauer D U. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. Journal of Power Sources 2014; 257: 325-334, https://doi.org/10.1016/j.jpowsour.2014.02.012.
  • 49. Schulze M C, Neale N R. Half-Cell Cumulative Efficiency Forecasts Full-Cell Capacity Retention in Lithium-Ion Batteries. ACS Energy Letters 2021; 6(3): 1082-1086, https://doi.org/10.1021/acsenergylett.1c00173.
  • 50. Sikha G, Popov B N, White R E. Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery. Journal of The Electrochemical Society 2004; 151(7): A1104, https://doi.org/10.1149/1.1759972.
  • 51. Su C, Chen H, Wen Z. Prediction of remaining useful life for lithium-ion battery with multiple health indicators. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2021; 23(1): 176-183, https://doi.org/10.17531/ein.2021.1.18.
  • 52. Tagade P, Hariharan K S, Ramachandran S et al. Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis. Journal of Power Sources 2020; 445(October 2019): 227281, https://doi.org/10.1016/j.jpowsour.2019.227281.
  • 53. Tao L, Ma J, Cheng Y et al. A review of stochastic battery models and health management. Renewable and Sustainable Energy Reviews 2017; 80(February 2018): 716-732, https://doi.org/10.1016/j.rser.2017.05.127.
  • 54. Vetter J, Novák P, Wagner M R et al. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources 2005; 147(1-2): 269-281, https://doi.org/10.1016/j.jpowsour.2005.01.006.
  • 55. Vidal C, Malysz P, Kollmeyer P, Emadi A. Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art. IEEE Access 2020; 8: 52796-52814, https://doi.org/10.1109/ACCESS.2020.2980961.
  • 56. Wang A, Kadam S, Li H et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 2018, https://doi.org/10.1038/s41524-018-0064-0.
  • 57. Wang J, Liu P, Hicks-Garner J et al. Cycle-life model for graphite-LiFePO4 cells. Journal of Power Sources 2011; 196(8): 3942-3948, https://doi.org/10.1016/j.jpowsour.2010.11.134.
  • 58. Wang J, Purewal J, Liu P et al. Degradation of lithium ion batteries employing graphite negatives and nickel e cobalt e manganese oxide þ spinel manganese oxide positives : Part 1 , aging mechanisms and life estimation. Journal of Power Sources 2014; 269: 937-948, https://doi.org/10.1016/j.jpowsour.2014.07.030.
  • 59. Wang Y, Zhang C, Chen Z. A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries. Applied Energy 2014; 135: 81-87, https://doi.org/10.1016/j.apenergy.2014.08.081.
  • 60. Wang Y, Zhang C, Chen Z. Model-based state-of-energy estimation of lithium-ion batteries in electric vehicles. Energy Procedia 2016; 88: 998-1004, https://doi.org/10.1016/j.egypro.2016.06.125.
  • 61. Wang Y, Zhang C, Chen Z. An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles. Journal of Power Sources 2016; 305: 80-88, https://doi.org/10.1016/j.jpowsour.2015.11.087.
  • 62. Wei P, Lu Z, Song J. Variable importance analysis: A comprehensive review. Reliability Engineering and System Safety 2015; 142: 399-432, https://doi.org/10.1016/j.ress.2015.05.018.
  • 63. Weng C, Cui Y, Sun J, Peng H. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression. Journal of Power Sources 2013; 235: 36-44, https://doi.org/10.1016/j.jpowsour.2013.02.012.
  • 64. Werner D, Paarmann S, Wetzel T. Calendar aging of li-ion cells-experimental investigation and empirical correlation. Batteries 2021, https://doi.org/10.3390/batteries7020028.
  • 65. Wik T, Fridholm B, Kuusisto H. Implementation and robustness of an analytically based battery state of power. Journal of Power Sources 2015; 287: 448-457, https://doi.org/10.1016/j.jpowsour.2015.03.165.
  • 66. Xiong R, Zhang Y, He H et al. A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries. IEEE Transactions on Industrial Electronics 2017; 65(2): 1526-1538, https://doi.org/10.1109/TIE.2017.2733475.
  • 67. Xiong R, Zhang Y, Wang J et al. Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles. IEEE Transactions on Vehicular Technology 2019; 68(5): 4110-4121, https://doi.org/10.1109/TVT.2018.2864688.
  • 68. Zhang X, Wang Y, Liu C, Chen Z. A novel approach of remaining discharge energy prediction for large format lithium-ion battery pack. Journal of Power Sources 2017; 343: 216-225, https://doi.org/10.1016/j.jpowsour.2017.01.054.
  • 69. Zhang Y, Tang Q, Zhang Y et al. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nature Communications 2020; 11(1): 6-11, https://doi.org/10.1038/s41467-017-02251-3.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41d9495b-3515-4c1e-ab0c-8a00cedc5f39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.