PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of external microtextures for efficient light outcoupling in OLEDs with different preferential orientation of emission dipoles

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
External light outcoupling structures provide a cost-effective and highly efficient solution for light extraction in organic light-emitting diodes. Among them, different microtextures, mainly optimized for devices with isotopically oriented emission dipoles, have been proposed as an efficient light extraction solution. In the paper, the outcoupling for a preferential orientation of emission dipoles is studied for the case of a red bottom-emitting organic light-emitting diode. Optical simulations are used to analyse the preferential orientation of dipoles in combination with three different textures, namely hexagonal array of sine-textures, three-sided pyramids, and random pyramids. It is shown that while there are minimal differences between the optimized textures, the highest external quantum efficiency of 51% is predicted by using the three-sided pyramid texture. Further improvements, by employing highly oriented dipole sources, are examined. In this case, the results show that the top outcoupling efficiencies can be achieved with the same texture shape and size, regardless of the preferred orientation of the emission dipoles. Using an optimized three-sided pyramid in combination with ideally parallel oriented dipoles, an efficiency of 62% is achievable. A detailed analysis of the optical situation inside the glass substrate, dominating external light outcoupling, is presented. Depicted results and their analysis offer a simplified further research and development of external light extraction for organic light-emitting devices with highly oriented dipole emission sources.
Rocznik
Strony
art. no. e141542
Opis fizyczny
Bibliogr. 44 poz., rys., wykr., tab.
Twórcy
  • Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia
Bibliografia
  • [1] Song, J., Lee, H., Jeong, E. G., Choi, K. C. & Yoo, S. Organic light-emitting diodes: pushing toward the limits and beyond. Adv. Mater.32, 1907539 (2020). https://doi.org/10.1002/adma.201907539
  • [2] Yin, Y., Ali, M. U., Xie, W., Yang, H. & Meng, H. Evolution ofwhite organic light-emitting devices: from academic research tolighting and display applications. Mater. Chem. Front. 3, 970–1031(2019). https://doi.org/10.1039/C9QM00042A
  • [3] Pode, R. Organic light emitting diode devices: An energy efficient solid state lighting for applications. Renew. Sust. Energy Rev. 133, 110043 (2020). https://doi.org/10.1016/j.rser.2020.110043
  • [4] Chang, Y. & Lu, Z. White organic light-emitting diodes for solid-state lighting. J. Disp. Technol. 9, 459-468 (2013). https://doi.org/10.1109/JDT.2013.2248698
  • [5] Reineke, S., Thomschke, M., Lüssem, B. & Leo, K. White organic light-emitting diodes: Status and perspective. Rev. Mod. Phys. 85, 1245-1293 (2013). https://doi.org/10.1103/RevModPhys.85.1245
  • [6] Hong, G. et al. A brief history of OLEDS-emitter development and industry milestones. Adv. Mater. 33, 2005630 (2021). https://doi.org/10.1002/adma.202005630
  • [7] Adachi, C., Xie, G., Reineke, S. & Zysman-Colman, E. Editorial: recent advances in thermally activated delayed fluorescence materials. Front. Chem. 8, 625910 (2020). https://doi.org/10.3389/fchem.2020.625910
  • [8] Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043-1048 (2003). https://doi.org/10.1002/adma.200302151
  • [9] Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. e i mission spontaneous of rate and Efficiency organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012). https://doi.org/10.1103/PhysRevB.85.115205
  • [10] Meerheim, R., Furno, M., Hofmann, S., Lüssem, B. & Leo, K. Quantification of energy loss mechanisms in organic light-emitting diodes. Appl. Phys. Lett. 97, 253305 (2010). https://doi.org/10.1063/1.3527936
  • [11] Salehi, A., Fu, X., Shin, D.-H. & So, F. Recent advances in OLED optical design. Adv. Funct. Mater. 29, 1808803 (2019). https://doi.org/10.1002/adfm.201808803
  • [12] Gather, M.C. & Reineke, S. Recent advances in light outcoupling from white organic light-emitting diodes. J. Photonics Energy 5, 057607 (2015). https://doi.org/10.1117/1.JPE.5.057607
  • [13] Möller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324-3327 (2002). https://doi.org/10.1063/1.1435422
  • [14] Greiner, H. Light extraction from Organic Light Emitting Diode substrates: simulation and experiment. Jpn. J. Appl. Phys. 46, 4125 (2007). https://doi.org/10.1143/JJAP.46.4125
  • [15] Bae, H., Kim, J. S. & Hong, C. Simulation for light extraction efficiency of OLEDs with spheroidal microlenses in hexagonal array. Opt. Commun. 415, 168-176 (2018). https://doi.org/10.1016/j.optcom.2018.01.044
  • [16] Zhou, J.-G., Hua, X.-C., Huang, C.-C., Sun, Q. & Fung, M.-K. Ideal microlens array based on polystyrene microspheres for light extraction in organic light-emitting diodes. Org. Electron. 69, 348-353 (2019). https://doi.org/10.1016/j.orgel.2019.03.051
  • [17] Zhai, G., Zhu, W., Huang, L., Yi, C. & Ding, K. Enhanced light extraction from green organic light-emitting diodes by attaching a high-haze random-bowls textured optical film. J. Phys. D: Appl. Phys. 53, 435101 (2020). https://doi.org/10.1088/1361-6463/ab9fc3
  • [18] Yen, J.-H., Wang, Y.-J., Hsieh, C.-A., Chen, Y.-C. & Chen, L.-Y. Enhanced light extraction from organic light-emitting devices through non-covalent or covalent polyimide–silica light scattering hybrid films. J. Mater. Chem. C 8, 4102-4111 (2020). https://doi.org/10.1039/C9TC06449D
  • [19] Gasonoo, A. et al. Outcoupling efficiency enhancement of a bottom-emitting OLED with a visible perylene film. Opt. Express 28, 26724-26732 (2020). https://doi.org/10.1364/OE.397789
  • [20] Song, J. et al. Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nat. Commun. 9, 3207 (2018). https://doi.org/10.1038/s41467-018-05671-x
  • [21] Tu, T. T. K. et al. Enhancement of light extraction from Organic Light-Emitting Diodes by SiO2 nanoparticle-embedded phase separated PAA/PI polymer blends. Mol. Cryst. Liq. Cryst. 686, 55-62 (2019). https://doi.org/10.1080/15421406.2019.1648036
  • [22] Kovačič, M. et al. Coupled optical modeling for optimization of Organic Light-Emitting Diodes with external outcoupling structures. ACS Photonics 5, 422-430 (2018). https://doi.org/10.1021/acsphotonics.7b00874
  • [23] Kovačič, M. et al. Combined optical model for micro-structured organic light emitting diodes. Inf. MIDEM 46, 167-275 (2017).
  • [24] Kovačič, M., Jošt, M., Bokalič, M. & Lipovšek, B. Sklopljeno optično modeliranje sodobnih optoelektronskih gradnikov. Elektrotehniski Vestn. 87, 223-234 (2020). http://www.dlib.si/stream/URN:NBN:SI:doc-2H1046ZZ/1ab9d4a8-6aab-40c3-abb5-9d826ff65672/PDF (in Slovene)
  • [25] Kovačič, M. et al. Analysis and optimization of light outcoupling in OLEDs with external hierarchical textures. Opt. Express 29, 23701-23716 (2021). https://doi.org/10.1364/OE.428021
  • [26] Lipovšek, B., Krč, J. & Topič, M. Microtextured light-management foils and their optimization for planar organic and perovskite solar cells. IEEE J. Photovolt. 8, 783–792 (2018). https://doi.org/10.1109/JPHOTOV.2018.2810844
  • [27] Jošt, M. et al. Efficient light management by textured nanoimprinted layers for perovskite solar cells. ACS Photonics 4, 1232-1239 (2017). https://doi.org/10.1021/acsphotonics.7b00138
  • [28] Schmidt, T. D. et al. Emitter orientation as a key parameter in Organic Light-Emitting Diodes. Phys. Rev. Appl. 8, 037001 (2017). https://doi.org/10.1103/PhysRevApplied.8.037001
  • [29] Hofmann, A., Schmid, M. & Brütting, W. The many facets of molecular orientation in organic optoelectronics. Adv. Opt. Mater. 9, 2101004 (2021). https://doi.org/10.1002/adom.202101004
  • [30] Kim, K.-H. & Kim, J.-J. Origin and control of orientation of phosphorescent and TADF dyes for high‐efficiency OLEDs. Adv. Mater. 30, 1705600 (2018). https://doi.org/10.1002/adma.201705600
  • [31] Yokoyama, D. Molecular orientation in small-molecule organic light-emitting diodes. J. Mater. Chem. 21, 19187-19202 (2011). https://doi.org/10.1039/C1JM13417E
  • [32] Schwab, T. et al. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Adv. Opt. Mater. 1, 707-713 (2013) https://doi.org/10.1002/adom.201300241
  • [33] Schwab, T., Schubert, S., Müller-Meskamp, L., Leo, K. & Gather, M. C. Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes. Adv. Opt. Mater. 1, 921-925 (2013). https://doi.org/10.1002/adom.201300392
  • [34] Zhang, W. et al. Rough glass by 3d texture transfer for silicon thin film solar cells. Phys. Status Solidi C 7, 1120-1123 (2010). https://doi.org/10.1002/pssc.200982773
  • [35] Escarré, J., Söderström, K., Battaglia, C., Haug, F.-J. & Ballif, C. High fidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications. Sol. Energy Mater. Sol. Cells 95, 881-886 (2011). https://doi.org/10.1016/j.solmat.2010.11.010
  • [36] Meier, M. et al. UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells. Prog. Photovolt. Res. Appl. 22, 1226–1236 (2014). https://doi.org/10.1002/pip.2382
  • [37] Xiao, L., Su, S.-J., Agata, Y., Lan, H. & Kido, J. Nearly 100% internal quantum efficiency in an organic blue-light electro-phosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 21, 1271-1274 (2009). https://doi.org/10.1002/adma.200802034
  • [38] Dias, F. B. et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707-3714 (2013). https://doi.org/10.1002/adma.201300753
  • [39] Zhang, Q. et al. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Adv. Mater. 27, 2096-2100 (2015). https://doi.org/10.1002/adma.201405474
  • [40] Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962-971 (1998). https://doi.org/10.1364/JOSAA.15.000962
  • [41] Kovačič, M. Effect of dipole position and orientation on light extraction for red OLEDs on periodically corrugated substrate - FEM simulations study. Inf. MIDEM 51, 73-84 (2021). https://doi.org/10.33180/InfMIDEM2021.105
  • [42] Lüder, H. & Gerken, M. FDTD modelling of nanostructured OLEDs: analysis of simulation parameters for accurate radiation patterns. Opt. Quantum Electron. 51, 139 (2019). https://doi.org/10.1007/s11082-019-1838-4
  • [43] Lipovšek, B., Krč, J. & Topič, M. Optical model for thin-film photovoltaic devices with large surface textures at the front side. Inf. MIDEM 41, 264-271 (2011). http://www.midem-drustvo.si/ Journal%20papers/MIDEM_41%282011%294p264.pdf
  • [44] MATLAB - MathWorks (2022). https://www.mathworks.com/products/matlab.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41d8167b-6840-460e-af39-6f36b47e6c44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.