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Abstract: This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action 
of oscillating forces. Calculation of dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the 
theory of complex variable functions. The numerical implementation of the developed algorithmis based on  the method of mechanical 
quadratures and collocation technique. The algorithm is effective in the analysis of the stress state caused by steady-state vibrations 
of plates.  
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1. INTRODUCTION 

Many structural elements, which are used in modern engi-
neering, can be modelled as plates during the structural analysis. 
Frequently these elements operate under the dynamic loads. 
Thus, estimation of their strength is based on the calculation 
of dynamic stress state near defects, which can be present in the 
plate. This greatly complicates the stress state due to the reflec-
tion of elastic waves from the defects' boundary inside the plate. 

In contrast with static loading, the strength of structural ele-
ments depends on the frequency of the applied dynamic load. 

Methods for analysis of the stress state of structural elements 
with one or more holes under dynamic loadings were developed 
in the works: Brebbia et al. (1984),  Guz et al. (1978), Savin 
(1968), Timoshenko (1967), Pao and Mow (1971), Mow 
and Mente (1963), etc.  

The problem of diffraction of elastic waves in an infinite plate 
with a circular hole or a system circular holes was solved by Guz 
et al. (1978), Pao et al. (1971) and Mow et al. (1963). In the works 
by Kubenko (1967) and Guz et al. (1978) the problem of the con-
centration of dynamic stress near holes of non-canonical form 
is studied by the method, which is based on the method of series 
and the  boundary shape perturbation technique. 

In the works Mushelishvili (1966) and Panasyuk et al. (1984) 
an algorithm for studying of the stress state of plates of different 
shape under the static loadings is developed. This algorithm 
is based on the boundary integral equation method and the theory 
of a complex variable. 

The main advantage of this approach is its universality and 
high accuracy in the case of multiply connected plates of difficult 
shape or infinite plates with holes, which are under the action of 
concentrated forces. 

Systems of integral equations for determination of the dynam-
ic stress state of plates are derived in the works: Kupradze (1963), 

Sherman (1962), Sladek et al. (2000). Numerical analysis of the 
stress state is held by the boundary element method in the works 
Benerjee (1994) and Brebbia et al. (1984). The Somigliana type 
integral formula is used. Thus, integral equations for relative 
displacements are directly obtained. Stress at the boundary 
is determined by the numerical differentiation. At high frequencies, 
numerical differentiation can lead to significant errors, thus, the 
technique which utilize stress integral formulae for dynamic prob-
lems is of high importance. 

2. SOLUTION OF THE PROBLEM 

2.1. Statement of the problem 

Consider an infinite plate with incision that is under the influ-

ence of concentrated oscillating forces  𝑄1𝑒
𝑖𝜔, 𝑄2𝑒

𝑖𝜔, where 
𝜔 is the frequency of the applied loading, and 𝜏 is time (Fig. 1). 
The problem consists in determination of the dynamic stresses 
at the boundary incision in the plate. 

 
Fig. 1. Model of the plate 

The center of gravity of the plate is placed at the origin 
of a Cartesian coordinate system 𝑂𝑥1х2. Symbol 𝐷 denotes the 
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domain occupied by the plate, and 𝐿 is the boundary of the do-

main 𝐷.  

2.2. Integral equation of the problem  

For the plane stress state the potential solution for image mo-
tion is selected as (Bonnet, 1995): 

𝑢𝑗 = ∫ 𝑝𝑖𝑈𝑖𝑗
∗ 𝑑𝑠

𝐿
+ ∫ 𝑄𝑖𝑈𝑖𝑗

∗ 𝑑𝐷,
𝐷

 (1) 

where 𝑝1, 𝑝2  are unknown complex potential function.  

The representation of the image 𝑈𝑖𝑗
∗  should be choosing with 

the regard to Zommerfeld conditions, since the plate is infinite. 
It has the form (Brebbia et al., 1984):  

𝑈𝑖𝑗
∗ =

1

2𝑐2
2 (𝛿𝑖𝑗 −  ∙ 𝑟𝑖𝑟𝑗), 

where 

 =
𝑖𝜋

2
(−𝐻0

2 (
𝜔𝑟

𝑐2
) +

𝑐2

𝜔𝑟
(𝐻1

2 (
𝜔𝑟

𝑐2
)−

𝑐2

𝑐1
𝐻1

2 (
𝜔𝑟

𝑐1
))), 

 =
𝑖𝜋

2
(𝐻2

2 (
𝜔𝑟

𝑐2
)− (

𝑐2

𝑐1
)
2

𝐻2
2 (

𝜔𝑟

𝑐1
)), 

𝑟𝑖 =
𝑟

𝑥𝑖
, 𝑟 = √(𝑥1 − 𝑥1

0)2 + (𝑥2 − 𝑥2
0)2, 𝑐1, 𝑐2 are the 

speeds of expansion and shear waves: c1
2 =

E

(1−2)
, c2

2 =

E

2(1+)
, Е is the Young's modulus, ρ is the density of the material; 

 is the Poisson ratio; Hk
2(r) = Jk(r) − Yk(r) are Hankel func-

tions of the second kind; 𝐽𝑘(𝑟),   𝑌𝑘(𝑟)  are Bessel functions of 
the first and second kinds (𝑖, 𝑗 = 1, 2). The integration over the 
domain and along the boundary is performed within variable 

𝑥1
0, 𝑥2

0. Here the time factor 𝑒𝑖𝜔𝜏 is omitted at the displacements 
and the stresses terms. 

Determination of the stresses at an arbitrary point of the plate 
with normal �⃗�  are performed by the formula (Savin, 1968):  

2(𝑛 − 𝑖𝑛) =
2𝐸

1−
𝑅𝑒 (



�̅�
(𝑢1 − 𝑖𝑢2)) +  

+𝑒2𝑖 2𝐸

1+
(


𝑧
(𝑢1 − 𝑖𝑢2)),    (2) 

where 𝛼 is the angle between the normal to the boundary of the 

plate and the axis Ох1; 


z̅
=

1

2
((



x1
− i



x2
)), 



z
=

1

2
((



x1
+ i



x2
)). 

Since the functions 𝑈𝑖𝑗
∗  along with the displacement 𝑢𝑗  are 

complex, the determination of the stress is performed for the real 
and imaginary parts of images (1):  

𝑢𝑗
𝑅 = ∫ (𝑝𝑖

𝑅𝑈𝑖𝑗
∗ 𝑅

− 𝑝𝑖
𝐼𝑈𝑖𝑗

∗ 𝐼
)𝑑𝑠

𝐿
+ ∫ (𝑄𝑖

𝑅𝑈𝑖𝑗
∗ 𝑅

− 𝑄𝑖
𝐼𝑈𝑖𝑗

∗ 𝐼
)𝑑𝐷

𝐷
, 

𝑢𝑗
𝐼 = ∫ (𝑝𝑖

𝐼𝑈𝑖𝑗
∗ 𝑅

+ 𝑝𝑖
𝑅𝑈𝑖𝑗

∗ 𝐼
)𝑑𝑠

𝐿
+ ∫ (𝑄𝑖

𝐼𝑈𝑖𝑗
∗ 𝑅

+ 𝑄𝑖
𝑅𝑈𝑖𝑗

∗ 𝐼
)𝑑𝐷

𝐷
, 

where the values with the superscript 𝑅 are real parts 

of corresponding functions  𝐹𝑘
𝑅 = 𝑅𝑒(𝐹𝑘), and the values with 

the superscript 𝐼 are the imaginary parts of corresponding 

functions  𝐹𝑘
𝐼 = 𝐼𝑚(𝐹𝑘), 𝑘 = 1,2.  

Substituting the representation for displacement in the formula 
(2), we obtain formulas for determining stresses at the boundary 
of the plate: 

2(𝑛
𝑅 − 𝑖𝑠𝑛

𝑅 ) = ∫ (𝑓1
𝑅𝑞𝑅 − 𝑓1

𝐼𝑞𝐼)𝑑𝑡
𝐿

+ ∫ (𝑓2
𝑅�̅�𝑅 − 𝑓2

𝐼�̅�𝐼)𝑑𝑡̅
𝐿

, 

∫ (𝑓1
𝑅𝑄𝑅 − 𝑓1

𝐼𝑄𝐼)𝑑𝐷
𝐷

+ ∫ (𝑓2
𝑅�̅�𝑅 − 𝑓2

𝐼�̅�𝐼)𝑑𝐷
𝐿

, 

2(𝑛
𝐼 − 𝑖𝑠𝑛

𝐼 ) = ∫ (𝑓1
𝑅𝑞𝐼 + 𝑓1

𝐼𝑞𝑅)𝑑𝑡
𝐿

+ ∫ (𝑓2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝑡̅
𝐿

, 

+∫ (𝑓1
𝑅𝑄𝐼 + 𝑓1

𝐼𝑄𝑅)𝑑𝐷
𝐷

+ ∫ (𝑓2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝐷
𝐿

, 

where 𝑓𝑘
𝑅 = 𝑓𝑘

𝑅(𝑥1, 𝑥2, 𝑥1
0, 𝑥2

0), 𝑓𝑘
𝐼 = 𝑓𝑘

𝐼(𝑥1, 𝑥2, 𝑥1
0, 𝑥2

0),
𝑘 = 1, 2 are functions of the real argument, which contain Bessel 
functions of second and first kind respectively and are obtained 
similarly to those in Mikulich and Maksymovych (2011);  

𝑞𝑅 =
𝑖𝑝𝑅𝑑𝑠

𝑑𝑡
, 𝑞𝐼 =

𝑖𝑝𝐼𝑑𝑠

𝑑𝑡
 are unknown functions to be determined, 

𝑡 = 𝑥1
0 + 𝑖𝑥2

0. 

Integration of functions 𝑓𝑘
𝑅, 𝑘 = 1,2 for small values of the 

argument leads to singularity. To establish their characteristics we 
use the asymptotic expressions for the Bessel functions of the 
second kind for small values of the argument (Elbert and Laforgia, 
1986). Then the formula for determining of the stresses can be 
written as: 

2(𝑛
𝑅 − 𝑖𝑠𝑛

𝑅 ) =
1

2𝑖

1+

2
∫ ((

𝑑𝑧

𝑑�̅�

�̅�−𝑡̅

𝑧−𝑡
− 1)

1

𝑧−𝑡
)

𝐿
𝑞𝑅𝑑𝑡, 

−
1

2𝑖
∫ (−

1+

2

1

�̅�−𝑡̅
+

𝑑𝑧

𝑑�̅�

3−

2

1

𝑧−𝑡
)

𝐿
�̅�𝑅𝑑𝑡̅ +, 

∫ (𝐺1
𝑅𝑞𝑅 − 𝑓1

𝐼𝑞𝐼)𝑑𝑡
𝐿

+ ∫ (𝐺2
𝑅�̅�𝑅 − 𝑓2

𝐼�̅�𝐼)𝑑𝑡̅
𝐿

+, 

∫ (𝑓1
𝑅𝑄𝑅 − 𝑓1

𝐼𝑄𝐼)𝑑𝐷
𝐷

+ ∫ (𝑓2
𝑅�̅�𝑅 − 𝑓2

𝐼�̅�𝐼)𝑑𝐷
𝐷

; 

2(𝑛
𝐼 − 𝑖𝑠𝑛

𝐼 ) =
1

2𝑖

1+

2
∫ ((

𝑑𝑧

𝑑�̅�

�̅�−𝑡̅

𝑧−𝑡
− 1)

1

𝑧−𝑡
)

𝐿
𝑞𝐼𝑑𝑡, 

−
1

2𝑖
∫ (−

1+

2

1

�̅�−𝑡̅
+

𝑑𝑧

𝑑�̅�

3−

2

1

𝑧−𝑡
)

𝐿
�̅�𝐼𝑑𝑡̅ +, 

∫ (𝐺1
𝑅𝑞𝐼

𝐿
+𝑓1

𝐼𝑞𝑅)𝑑𝑡 + ∫ (𝐺2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝑡̅
𝐿

+, 

∫ (𝑓1
𝑅𝑄𝐼

𝐷
+ 𝑓1

𝐼𝑄𝑅)𝑑𝐷 + ∫ (𝑓2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝐷
𝐷

; 

where 𝑓𝑘
𝐼, 𝐺𝑘

𝑅 = 𝐺𝑘
𝑅(𝑥1, 𝑥2, 𝑥1

0, 𝑥2
0), 𝑘 = 1, 2 are bounded 

and continuous functions of real argument everywhere in D.  
Let us perform the limiting transition when (𝑥1, 𝑥2) → 𝐿 

in the last formula according to Plemelj-Sokhotski formulas (Savin, 
1968). Consequently, integral equations for determination of the 

unknown functions 𝑞𝑅 and 𝑞𝐼 for given loading at the boundary 
are obtain: 

q̅R +
1

2i

1+

2
∫ ((

dz

dz̅

z̅−t̅

z−t
− 1)

1

z−t
)

L
qRdt, 

−
1

2𝑖
∫ (−

1+

2

1

�̅�−𝑡̅
+

𝑑𝑧

𝑑�̅�

3−

2

1

𝑧−𝑡
)

𝐿
�̅�𝑅𝑑𝑡̅ +,           (3) 

∫ (𝐺1
𝑅𝑞𝑅 − 𝑓1

𝐼𝑞𝐼)𝑑𝑡
𝐿

+ ∫ (𝐺2
𝑅�̅�𝑅 − 𝑓2

𝐼�̅�𝐼)𝑑𝑡̅
𝐿

= 2𝑆𝑅; 

�̅�𝐼 +
1

2𝑖

1+

2
∫ ((

𝑑𝑧

𝑑�̅�

�̅�−𝑡̅

𝑧−𝑡
− 1)

1

𝑧−𝑡
)

𝐿
𝑞𝐼𝑑𝑡, 

−
1

2𝑖
∫ (−

1+

2

1

�̅�−𝑡̅
+

𝑑𝑧

𝑑�̅�

3−

2

1

𝑧−𝑡
)

𝐿
�̅�𝐼𝑑𝑡̅ +,             (4) 

∫ (𝐺1
𝑅𝑞𝐼

𝐿
+𝑓1

𝐼𝑞𝑅)𝑑𝑡 + ∫ (𝐺2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝑡̅
𝐿

= 2𝑆𝐼,  

 
where the first and second integrals are evaluated for their Cau-

chy principal value; 𝑆𝑅, 𝑆𝐼 are known function:   

2𝑆𝑅 = ∫ (𝑓1
𝐼𝑄𝐼 − 𝑓1

𝑅𝑄𝑅)𝑑𝐷
𝐷

+ ∫ (𝑓2
𝐼�̅�𝐼 − 𝑓2

𝑅�̅�𝑅)𝑑𝐷
𝐷

,  

2𝑆𝐼 = ∫ (𝑓1
𝑅𝑄𝐼

𝐷
+ 𝑓1

𝐼𝑄𝑅)𝑑𝐷 + ∫ (𝑓2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝐷
𝐷

. 

Stresses at the boundary of the incisions of the plate are de-
termined in the absence of the contact of the incision's boundary. 
This is verified by the formulas: 
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𝑢1
𝑅 − 𝑖𝑢2

𝑅 = −
1+

𝐸𝑖
∫ (𝐹1

𝑅𝑞𝑅 − 𝐹1
𝐼𝑞𝐼)𝑑𝑡

𝐿
+, 

∫ (𝐹2
𝑅�̅�𝑅 −

𝐿
𝐹2

𝐼�̅�𝐼)𝑑𝑡̅ + ∫ (𝐹1
𝑅𝑄𝑅 − 𝐹1

𝐼𝑄𝐼)𝑑𝐷
𝐷

+

∫ (𝑓2
𝑅�̅�𝑅 − 𝐹2

𝐼�̅�𝐼)𝑑𝐷
𝐿

, (5)  

𝑢1
𝐼 − 𝑖𝑢2

𝐼 = −
1+

𝐸𝑖
∫ (𝐹1

𝑅𝑞𝐼 + 𝐹1
𝐼𝑞𝑅)𝑑𝑡

𝐿
+, 

∫ (𝐹2
𝑅�̅�𝐼 +

𝐿
𝐹2

𝐼�̅�𝑅)𝑑𝑡̅ + ∫ (𝐹1
𝑅𝑄𝐼 + 𝐹1

𝐼𝑄𝑅)𝑑𝐷
𝐷

+

∫ (𝑓2
𝑅�̅�𝐼 + 𝐹2

𝐼�̅�𝑅)𝑑𝐷
𝐿

, (6) 

where 𝐹𝑘
𝑅 = 𝐹𝑘

𝑅(𝑥1, 𝑥2, 𝑥1
0, 𝑥2

0), 𝐹𝑘
𝐼 = 𝐹𝑘

𝐼(𝑥1, 𝑥2, 𝑥1
0, 𝑥2

0),
𝑘 = 1, 2 are functions of the real argument, which contain Bessel 
functions of second and first kind respectively and are obtained 
similar to those by Mikulich (2012). 

2.3. Numeric solution of the algortim  

To study the stress state of the infinite plate with one incision 

denote its boundary contour as 𝛺. The incision in the plates 
is modeled as an elliptic hole with axis ratio of 10. Its equation in 
parametric form is as follows: 𝑥1 = 𝜑(𝜃), 𝑥2 = 𝜓(𝜃), 0 <
𝜃 < 2𝜋. Parameter θ is chooses with respect to the condition 
that  traversing the path boundary region remains at the left. To 
reduce the number of nodal points the numerical integration 
is performed using Sidi sigmoidal non-linear transformation (Sidi, 
2006):  

𝜃 = 𝐺(𝜉) = 𝜉 −
sin (2𝜉)

2
, 0 < ξ < 2𝜋. 

Then, at the boundary it holds that 𝑡 = 𝜑(𝜃) + 𝑖 ∙ 𝜓(𝜃) =
𝑔(𝜃). 

Solution of integral equations (3) - (4) is performed using the 
method of mechanical quadratures. For integrals with Cauchy-
type kernels quadrature formulas of the form (Kolm and Rokhlin, 
2001; Eshkuvatov et al., 2009) are used: 

∫
q

t−z
dt = h∑ qn

g′
n

tn−z

K
n=1  

Ω
, 

𝑡𝑛 = 𝑔(𝜃𝑛), 𝑔′𝑛 = 𝑔′(𝜃𝑛),   𝜃𝑛 = 𝑛 ∙ ℎ,   𝑧 = 𝑧(�̃�),  

�̃� = 𝜃 +
ℎ

2
,  = 1,𝐾, 𝑞𝑛 = 𝑞(𝑡𝑛), ℎ =

2𝜋

𝐾
. 

And for other of the integrals the quadrature formulas of the 
form (Mikulich, 2012) are applied: 

∫ 𝑞 ∙ 𝑓(𝑡,  𝑧𝛺
)𝑑𝑡 = ℎ∑ 𝑞𝑛 ∙ 𝑓𝑛 ∙ 𝑔′𝑛

𝐾
𝑛=1 , 

where 𝑓𝑛 = 𝑓(𝑡𝑛, 𝑧).  
Replacing the integrals with the specified quadrature formulas, 

the system of linear algebraic equations for determination of the 

nodal values of unknown boundary functions 𝑞𝑅 and 𝑞𝐼 is ob-
tained: 

�̅�
𝑅 + ℎ ∑ 𝑓1𝑛

𝑅 𝑞𝑛
𝑅𝑔′

𝑛

𝐾

𝑛=1

+ ℎ ∑ 𝑓2𝑛
𝑅 �̅�𝑛

𝑅�̅�′𝑛 −

𝐾

𝑛=1

ℎ ∑ 𝑓1𝑛
𝐼 𝑞𝑛

𝐼 𝑔′
𝑛

𝐾

𝑛=1

 

−ℎ ∑ 𝑓2𝑛
𝐼 �̅�𝑛

𝐼 �̅�′𝑛
𝐾
𝑛=1 = 2𝑆

𝑅, 

�̅�
𝐼 + ℎ ∑ 𝑓1𝑛

𝑅 𝑞𝑛
𝐼 𝑔′

𝑛

𝐾

𝑛=1

+ ℎ ∑ 𝑓2𝑛
𝑅 �̅�𝑛

𝐼 �̅�′𝑛 +

𝐾

𝑛=1

ℎ ∑ 𝑓1𝑛
𝐼 𝑞𝑛

𝑅𝑔′
𝑛

𝐾

𝑛=1

 

+ℎ ∑ 𝑓2𝑛
𝐼 �̅�𝑛

𝑅�̅�′𝑛
𝐾
𝑛=1 = 2𝑆

𝐼, 

where �̅�
𝑅 = �̅�𝑅(𝑧),  𝑞𝑛

𝑅 = 𝑞𝑅(𝑡𝑛),   �̅�
𝐼 = �̅�𝐼(𝑧), are real and 

imaginary parts of the unknown functions at the boundary, 𝑓𝑖𝑛
𝑅 =

𝑓𝑖
𝑅(𝑡𝑛,  𝑧), 𝑓𝑖𝑛

𝐼 = 𝑓𝑖
𝐼(𝑡𝑛,  𝑧),  𝑖 = 1, 2, 𝑆

𝑅 = 𝑆𝑅(𝑧), 
 𝑆

𝐼 = SI(z) are known function. 
Calculations were performed in the absence of contact 

of boundary of incisions that was tested on the basis of Esq. (5)-
(6). 

After determination of the unknown functions, stress state 
of the plate is calculated by dependencies, which are obtained 
in accordance with representation (1) by providing singular com-
ponents in the kernels of equations and consequently using Ple-
melj-Sokhotski formulas:  

2(𝜃 − 𝑖𝑠𝜃) = 2(𝜃
𝑅 − 𝑖𝑠𝜃

𝑅 ) + 2𝑖(𝜃
𝐼 − 𝑖𝑠𝜃

𝐼 ), 

2(𝜃
𝑅 − 𝑖𝑠𝜃

𝑅 ) =
1+

2
𝑞

𝑅 +
1−

2
�̅�

𝑅 + ℎ ∑ 𝑓1𝑛
𝑅 𝑞𝑛

𝑅𝑔′
𝑛

𝐾
𝑛=1 , 

+h∑ 𝑓2𝑛
𝑅 �̅�𝑛

𝑅�̅�′𝑛 −𝐾
𝑛=1 ℎ ∑ 𝑓1𝑛

𝐼 𝑞𝑛
𝐼 𝑔′

𝑛
𝐾
𝑛=1 −

ℎ ∑ 𝑓2𝑛
𝐼 �̅�𝑛

𝐼 �̅�′𝑛
𝐾
𝑛=1 ,+�̃�

𝑅, 

2(𝜃
𝐼 − 𝑖𝑠𝜃

𝐼 ) =
1+

2
𝑞

𝐼 +
1−

2
�̅�

𝐼 + ℎ ∑ 𝑓1𝑛
𝑅 𝑞𝑛

𝐼 𝑔′
𝑛

𝐾
𝑛=1 , 

+h∑ 𝑓2𝑛
𝑅 �̅�𝑛

𝐼 �̅�′𝑛 +𝐾
𝑛=1 ℎ ∑ 𝑓1𝑛

𝐼 𝑞𝑛
𝑅𝑔′

𝑛
𝐾
𝑛=1 +

ℎ ∑ 𝑓2𝑛
𝐼 �̅�𝑛

𝑅�̅�′𝑛
𝐾
𝑛=1 ,+�̃�

𝐼, 

where  f̃in
R = f̃i

R(tn,  z), f̃in
I = f̃i

I(tn,  z);  i = 1, 2; Φ̃
R,

Φ̃
I  are the values of known functions in selected points of collo-

cation, which are obtained  similar to Mikulich and Maksymovych 
(2011). 

2.4. Numeric calculation stresses in the plate  

Based on the developed technique the distribution of maximal 
stresses in the plate with an incision under the actions of oscillat-

ing forces 𝑄1𝑒
𝑖𝜔, 𝑄2𝑒

𝑖𝜔 is studied. The forces are applied 

at the points (0; ±𝑏).  
The results of calculations of dynamic stresses are attributed 

to the intensity of the stresses oscillating forces. 

 

Fig. 2. Maximum dynamic stresses in the plate with a horizontal incision 

Fig. 2 shows the results of numerical calculation of the de-
pendence of the maximum dynamic stresses on the dimension-

less frequency 𝜔2
′ =

𝜔∙𝑎

𝑐2
 of the applied forces, where 𝑐2 is the 

speed of shear waves. The incision in the plate is modeled as an 
elliptic hole with axis ratio of 10. Calculations were performed for 
different values of the distance between the point of application of 
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the oscillating forces and the center of the incision. The calcula-
tions were performed for 200 nodal points at the boundary of the 
incision. The Poisson’s ratio was equal to 0.3. In Fig. 2 curve 1 

corresponds to the case of  𝑏 = 𝑎 ; curve 2 corresponds to the 
case of  𝑏 = 1.5𝑎  and curve 3 corresponds to the case of  𝑏 =
2𝑎, where 𝑎 is a major semi axis of the incision.  

Fig. 2 shows that the maximum dynamic stresses have the 
fluctuating nature. At high frequencies, a significant increase 
in the stresses doesn’t occur due to the absence of contact at the 
boundary of incision. 

Analysis of the numerical results shows that the maximum 
stresses at the boundary of the incision are increasing (for a range 
of frequencies in (0.01, 0.9)), and then they decrease and become 
lower comparing to those under static loads.  

The maximum dynamic stresses exceed the corresponding 
static ones in 1.82 times for the case, when the distance to the 
points of application of forces is equal to the major semi-axis 
of the incision. With the increase in distance to the point of appli-
cation of forces the maximum dynamic stresses exceed static 

in 1.86 times for  𝑏 = 1.5𝑎  and in 1.93 times for  𝑏 = 2𝑎. 
Values of dynamic stresses at the boundary of incision at specific 
values of the frequency for oscillating concentrated forces 

𝑄1𝑒
𝑖𝜔, 𝑄2𝑒

𝑖𝜔, which are applied at the points (0, 𝑎) and 
(0, −𝑎)  and Poisson ratio of 0.3 are determined. The results are 

shown in Fig. 3. Here θ  is the angle in radians. 

 
Fig. 3. Distributions of stresses on the boundary of the horizontal incision 

 
Fig. 4. Maximum dynamic stresses in the plate with a vertical incision  

The figure shows that the maximum stresses are occurring 
at the end of the major semi-axis. There is no significant change 
in the distribution of stresses along the boundary of incision with 
increasing in frequency.  

The effect of orientation of incision on the distribution of max-
imum dynamic stresses is also studied. The values of the maxi-
mum stresses in the plate with a vertical incision for different 

values of dimensionless frequency 𝜔2
′ =

𝜔∙𝑎

𝑐2
 are calculated. The 

results are shown in Fig. 4.  
Calculations were performed for different values of the dis-

tance from the point of application of the oscillating forces to the 
center of the incision. In numerical calculations 250 nodal points 
meshed the boundary of the incision, and the Poisson ratio was 

equal to 0.3. In Fig. 4 curve 1 corresponds to the case of 𝑏 =
1.8𝑎; curve 2 corresponds to the case of  𝑏 = 2𝑎 curve 3 corre-
sponds to the case of  𝑏 = 2.2𝑎, where 𝑎 is the major semi-axis 
of the incision.  

Fig. 2 shows that the maximum dynamic stresses have the 
fluctuating nature.  

The maximum stresses are observed at the frequency of 0.75, 
and minimum stresses occur at frequency of 1.72. Increase in the 
frequency of the applied oscillating force causes a significant 
increase in stresses, which exceed the static ones.  

The maximum dynamic stresses exceed the corresponding 
static in 1.55 times for the case when the distance to the points of 

application of forces is 𝑏 = 1.8𝑎. With increase in distance to the 
point of application of forces the maximum dynamic stresses 

exceed static in 1.65 times for 𝑏 = 2𝑎 and in 1.75 times for 𝑏 =
2.2𝑎.   
Values of dynamic stresses at the boundary of vertical incision at 
specific values of the frequency for oscillating concentrated 

forces  𝑄1𝑒
𝑖𝜔, 𝑄2𝑒

𝑖𝜔, which are applied at the points 
(0, 1.8𝑎) and (0, −1.8𝑎) and Poisson's ratio of 0.3 are 

determined. The results are shown in Fig.5. Here θ  is the angle in 
radians. 

The figure shows that the maximum stress occurs at the end 
of the major semi-axis. With increase in frequency the decrease 
in the oscillating nature of the distribution of stresses along the 
incision boundary is observed.  

With increase in frequency of the applied load stress distribu-
tion along the boundary of the incision changes. Therefore, 
to study the dynamic stress state it is not enough to determine the 
value of stress just at a few points. This demonstrates the signifi-
cant accuracy of the proposed algorithm as opposed to the meth-
ods of series and boundary shape perturbation. Since these 
methods define stresses only at specific points, but not along the 
boundary. 

 
Fig. 5. Distributions of stresses on the boundary of the vertical incision 

The dependence of the distribution of maximum dynamic 
stress from the inclination angle of the incision is investigated. 

Concentrated forces 𝑄1𝑒
𝑖𝜔, 𝑄2𝑒

𝑖𝜔 are applied at the points 
(0, 2𝑎) and (0, −2𝑎). The calculations were performed for 250 
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nodal points at the boundary of the incision and the Poisson’s 

ratio of 0.3. In fig. 6 curve 1 corresponds to the case of 0°, curve 

2 — 30°, curve 3 — 45°, curve 4 — 60°, curve 5 — 90°, where   
is an angle between the major axis of the incision and 𝑂𝑥1. axis. 

 
Fig. 6. Maximum dynamic stresses in the plate with an incision  

Fig. 6 shows that the maximal dynamic stresses have the fluc-
tuating nature regardless of the inclination of the incision. The 
maximum dynamic stresses exceed the corresponding static for 

the case when the frequency 𝜔2
′  of the applied load is in the 

range (0.9; 1). For vertical incision maximum dynamic stresses 

occur at a frequency 𝜔2
′ = 3.45. 

3. SUMMARY  

The technique developed in this paper allows to study the 
stresses at the boundary of incisions in plates under the action 
of concentrated oscillating forces. Effects of orientation of inci-
sions on the stress distribution are studied. Effects of the distance 
between the incisions on the stress distribution are investigated.  

The advantage of the proposed algorithm is the ability of de-
termination of the dynamic stresses along the entire boundary, 
and not at the only specific point. This makes it possible to inves-
tigate in details the dynamic stress state of defective plates. 
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