PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unconventional Methods of Joining Composites and Metals in the Context of Weight Reduction of Car Bodies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the basic trends in the automotive industry today is to achieve the most acceptable ratio between the total weight of the car to its overall performance and utility properties. Reducing the weight of cars is largely due to the use of new materials, where composite materials offer a wide space for their application. Composite materials have their specific properties which is very beneficial in reducing the total weight. Another advantages is strength, stiffness, low fiber density, the ability to form them into any shape based on the required applications. One of the challenges associated with the use of composite materials is the search for new technological possibilities of joining composite materials with metals. These include technologies as for example riveting, ultrasonic welding, but especially gluing. Bonding is currently one of the most preferred ways of joining composite materials. The paper deals with testing of technology of bonding composite materials with metals used in the manufacture of automobiles and a comparison of individual results obtained from the experiment.
Twórcy
  • Department of Automobile Production, Faculty of Mechanical Engineering, Technical University in Košice, Mäsiarska 74, 040 01 Košice, Slovakia
  • Department of Automobile Production, Faculty of Mechanical Engineering, Technical University in Košice, Mäsiarska 74, 040 01 Košice, Slovakia
Bibliografia
  • 1. Park M., Frey K., Simon L. Modeling and Analysis of Composite Bonded Joints. American Journal of Mechanical and Industrial Engineering 2017; 2(1): 1–7.
  • 2. SusChem: Polymer composites for automotive sustainability. Cefic – The European Chemical Industry Council 2015.
  • 3. Welton N. How a new bonding solution could be a game-changer for vehicle lightweighting. Powdertech Surface Science, October 2020.
  • 4. CAR Technology Roadmap: Intelligent Mobility Technology, Materials and Manufacturing Processes, and Light Duty Vehicle Propulsion, 2017.
  • Available at: https://www.cargroup.org/wp-content/uploads/2017/07/Technology_Roadmaps.pdf
  • 5. Wan Y., Takahashi J. Development of carbon fiber reinforced thermoplastics for mass-produced automotive applications in Japan. jcompossci. 2021; 5(3).
  • 6. Rivai A., Diharjo K., Anwar M., Tarigan R. Effect of Adhesive Thickness and Surface Treatment to Shear Strength on Single Lap Joint AL/CFRP Using Adhesive of Epoxy/Al-fine-powder, Conference: 6th Nanoscience and Nanotechnology Symposium 2015.
  • 7. Kim M.K., Elder D.J., Wang C.H., Feih S. Interaction of laminate damage and adhesive disbonding in composite scarf joints subjected to combined in-plane loading and impact, Composite Structures 2012; 94: 945–953.
  • 8. Hart-Smith L.J. Adhesive bonded double-lap joints, Technical report for NASA, January 1973, NASA CR 112235.
  • 9. Banea M.D., Rosioara M., Carbas R.C. da Silva L.F.M.: Multi-material adhesive joints for automotive industry. Composites Part B: Engineering 2018 151.
  • 10. Legdin E. Joining of metal and fiber composites Stockholm, Sweden 2017. Available at: https://www.diva-portal.org/smash/get/diva2:1207110/FULLTEXT01.pdf
  • 11. European Aluminium Association: Car body – Body structures. Alum. Automot. Man. 2011; 6: 1–84.
  • 12. Dupont Mobility and Materials: Structural Bonding of Lightweight Cars Crash durable, safe and economical. Available at: https://www.dupont.com/content/dam/dupont/amer/us/en/transportation-industrial/public/documents/en/DP09_Structural_Bonding_Lightweight_Cars_Brochure_NA.pdf
  • 13. Ye J., Kobayashi T., Murakawa M., Higuchi T.: Kernel discriminant analysis for environmentalsound recognition based on acoustic subspace. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing 2013; 808–812.
  • 14. Gornet L., Ijaz H. A high-cyclic elastic fatiguedamage model for carbon fibre epoxy matrix laminates with different mode mixtures, Composites: Part B, 2011; 42: 1173–1180.
  • 15. Zhang J., Liu K., Luo C., Chattopadhyay A. Crack initiation and fatigue life prediction on aluminum lug joints using statistical volume element–based multiscale modeling. Journal of Intelligent Material Systems and Structures 2013; 24(17): 2097–2109.
  • 16. Zhang J., Johnston J., Chattopadhyay A.: Physics-based multiscale damage criterion for fatigue crack prediction in aluminium alloy. Fatigue & Fracture of Engineering Materials & Structures 2014; 37(2): 119–131.
  • 17. Agarwal B.D., Lawrence J.B.: Fiber composites. Prague: SNTL – Nakladatelství technické literatury 1987; 294.
  • 18. Kelly, G. Load transfer in hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2005; 69: 35–43.
  • 19. Weitzenböck J.R., McGeorge D. Science and Technology of Bolt-Adhesive Joints March 2011. In book: Hybrid Adhesive Joints. DOI: 10.1007/8611_2011_54
  • 20. Jiansheng G., Bingchen W., Lei L., Jinjun Z., Zhiwei S. Effect of Structural Relaxation on Hardness and Shear Band Features of Zr_ (64.13) Cu_(15.75) Ni_ (10.12) Al_ (10) Bulk Metallic Glass During Indentation. Rare Metal Materials and Engineering 2008, 4.
  • 21. Remmers J.J.C., de Borst R. Delamination buckling of fibre–metal laminates, Composites Science and Technology 2001; 61: 2207–2213.
  • 22. Zhang J., Gu J., Li L., Huan Y., Wei. B.: Bonding of alumina and metal using bulk metallic glass forming alloy. International Journal of Modern Physics B 2009; 23(06n07): 1306–1312.
  • 23. Bianchi F., Zhang X.: A cohesive zone model for predicting delamination suppression in z-pinned laminates, Composites Science and Technique 2011; 71: 1898–1907.
  • 24. Plagianakos T.S., Saravanos D.A. Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates, Composite Structures 2009; 87: 23–35.
  • 25. Li J., Meng S., Tian X., Song F., Jiang C., Composites 2012; B(43): 961–971.
  • 26. Jančář J. Introduction to materials engineering of polymer composites. Brno: Brno University of Technology, Faculty of Chemistry 2003; 193.
  • 27. STN EN 1465: 2006, Adhesives. Determination of the shear strength of a lap joint under tensile stress (2006).
  • 28. Kyono T. Life Cycle Assessment of Carbon Fiber-Reinforced Plastic. In: The Society of Fiber Science and Techno, J. (eds) High-Performance and Specialty Fibers. Springer, Tokyo 2016.
  • 29. Klett L.B., Boeman, R.G. Mode I Fracture Testing of Adhesively Bonded Joints. SAE Transactions Section 5. Journal of materials & manufacturing. Published By: SAE International 1999; 108: 944–952.
  • 30. Engelmanna C., Meiera D., Olowinskya A., Kielwasserb M. Metal meets Composite – Hybrid Joining for Automotive Applications. Lasers in Manufacturing Conference 2015. Available at: https://www.wlt.de/lim/Proceedings/Stick/PDF/Contribution224_final.pdf
  • 31. Liu Y. Application of Carbon fiber-reinforced plastic composite material in automotive bumper. IOP Conf. Series: Earth and Environmental Science 2021; 692: 022057. IOP Publishing. DOI: 10.1088/1755–1315/692/2/022057
  • 32. Dobrzański P., Oleksiak W. Design and analysis methods for composite bonded joints. Transactions on aerospace research 2021; 262: 45–63. DOI: 10.2478/tar-2021–0004.
  • 33. Bareš R. Composite materials. Praha: SNTL 1988; 325.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41d1db28-4b54-45f5-ae5e-aaeac03cdbb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.