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Abstract This paper addresses the problem of using functional programming (FP) lan-

guages for research and educational purposes. In order to identify the problems

associated with the use of FP languages such as Erlang, an experiment con-

sisting of two surveys was performed. The first survey was anonymous and

aimed at establishing whether the participants prefer object-oriented or functi-

onal coding. The second one was a survey made after the students finished an

Erlang course. The results of these two surveys demonstrate that functional

programming is underrated with no apparent reasons. Possible steps to address

this problem are suggested.
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1. Introduction

The BMSTU “Computer Systems and Networks” sub-department prepares bachelors

and masters candidates of science in different disciplines: software engineering, har-

dware engineering, and hardware. Students study procedural (Pascal, C, Assembler)

and object-oriented (Object Pascal/Delphi, C++, Ruby) languages. However, the

functional paradigm is taught only in theory and not in practice. At the moment,

object-oriented programming is commonly perceived as the only modern program-

ming paradigm. Although this opinion is not so frequently found in the professional

literature, it is still often expressed in online resources [10–13]. Students of most

Russian university programs study Pascal/Delphi, C/C++/C#, Visual Basic, Java,

JavaScript, and Ruby. It is claimed that procedural programming is suitable for

embedded systems whereas functional programming is outdated and obsolete. In ad-

dition, one can refer to statistics of the most-mentioned books on StackOverflow [9]:

when 40 million questions and answers were analyzed and a list of 5072 books was

retrieved, 15 were solely dedicated to functional programming, while 8 out of the top

10 books contained tag “object” (out of the top 30 books containing tag “functional

programming”). The authors would like to challenge this attitude by using our expe-

rience in research as well as our time teaching the course “Parallel programming” at

BMSTU. We also refer to state-of-the-art worldwide experience.

2. Overview of approaches and paradigms

2.1. Asynchronous programming

Asynchronous programming is a paradigm that assumes the independent occurrence of

events (for instance, a server process waiting for a signal) when it cannot be predicted

which signal will be sent by client [4] and when.

In fact, the code behavior is event-driven; i.e., dependent on external signals such

as messages. Many actors (independent processes) pass messages to each other, which

makes them change states and/or compute. The Erlang programming language is an

example of a concurrent asynchronous language; it possesses the following features:

• it is a managed language, since it uses a virtual machine for code execution,

• many thousands of processes can exist on one virtual machine,

• the processes are actors, so that they are completely unaware of other processes

except for process identifiers or given names (and only when this information is

explicitly given).

The latter feature is required because processes that do not know anything about

each other cannot communicate, as message passing is the only possible type of com-

munication between two actors.
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2.2. Parallel programming

Parallel programming is a type of code execution when many calculations are per-

formed simultaneously. Unlike concurrent programming, the code is run on different

processors (or processor cores) without interruption. Apart from this, parallel pro-

gramming is a programming paradigm that allows us to optimize the code (including

data structures) for parallel execution.

2.3. Pattern matching

Pattern matching is a process of comparing a given sequence with predefined patterns.

It is a very flexible tool in functional programming by which a value, type, or even

structure can be checked immediately: do one action if X equals 1 but do another

action if X is equal to 1.0. Also, patterns do not have to be fully predefined; free

(or anonymous) variables are always used for successful matching. As an example,

a third action should be performed if the given X equals to 2 or any other value.

Patterns should be prioritized so that all patterns should be applicable in theory (an

example of a strict pattern: X is equal to 1; a less strict pattern: X is an integer).

Importantly, if a less strict pattern would be ranked higher in a matching list, then

all integer X variables (including 1) will match it so that the code associated with

the strict pattern will never be computed. Among others, pattern-matching is used

in Markov algorithms.

2.4. Recursion

Recursion is a phenomenon when a piece of code or a data structure is defined throug-

hout itself. An example of a recursive function is the factorial. If variable X given to

the factorial function is 0 (base clause), then it returns 1. If X is greater than zero,

then it returns X ∗ factorial(X − 1).

An example of a recursive data type is the list in Erlang. Each list can either

be empty or contain a head and a tail. A tail is usually a list that can either be

empty or contain a head and a tail. The recursion is widely used in pure (or close to

pure) functional languages because of its immutable variables (which means a variable

cannot be used in an iterative cycle). Indeed, cycles (for, while, until, etc.) do not

exist in pure functional languages; therefore, each cycle has to be represented as

a recursive function.

2.5. Distributed programming

Distributed programming could be described as a parallel or concurrent programming

for distributed systems. A distributed system is a system with physically distributed

components that can communicate with each other through a network using mes-

sage passing. Commonly, all nodes in such systems are equivalent (homogeneous

distributed systems), although their roles can differ in a certain way (heterogeneous

distributed systems). Components of a distributed system are independent from the
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point of view of reliability engineering. A system where the failure of one or more

components would not lead to the denial of service (DOS) is called fault-tolerant or

robust. The fault tolerance of computing nodes can be achieved at different levels:

hardware, software, or both. In the case of hardware fault-tolerance, the duplication

and reservation of the components is used.

In the case of software fault-tolerance, software is built layer by layer; the main

principles are as follows:

• error isolation: an error from a lower level does not affect the processes on the

higher levels or, in the best case, does not affect the processes on the same level

or the lower levels,

• supervision: a relationship between processes when one of them is able to react

to the unexpected termination of the other.

The Erlang programming language was created for distributed soft real-time

fault-tolerant systems and offers to use both of the main principles of software fault-

tolerance: the architecture of any software system should be hierarchical, and some

processes from the higher levels (supervisors) have to intercept error messages from

their child processes from the lower levels. Such a hierarchy is called a supervision tree.

A supervision tree can be distributed when a process on one node can be a supervisor

for the processes on other computing nodes (or on the same physical computing node

but on a different Erlang virtual machine).

2.6. Functional programming

A functional programming paradigm relies on the use of mathematical functions. This

paradigm is declarative; i.e., the programmer writes code of what to do rather than

how to do it. Functional languages usually have fewer side effects, such as functions

that change the internal states or do not have such effects at all (pure functional

languages).

The immutability of the data is an important feature of functional programming:

it is impossible to write X = X +1 in most of the functional languages because the X

variable is already bound to a value and cannot be modified in the local function.

In addition, many functional languages do not have global variables. In a functional

language, a function can be stored in a variable (lambda functions or fun-evaluations

in Erlang).

In functional programming, an important role belongs to lambda functions (ano-

nymous functions or fun-evaluations in Erlang) and higher-order functions (functions

receiving other functions as arguments and/or returning functions as results). As

mentioned above (see “Recursion”), many functional programming languages do not

have iterative cycles and instead employ recursive functions for implementing cyclic

operations.
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3. Methodology

Two surveys were performed: a code-readability survey and a survey among BMSTU

master students. Erlang was also used in the research.

3.1. Code-readability survey

The experiment regarding code readability was completed via Google Forms and in-

volved 94 participants. Two anonymous code listings were offered, both implementing

the same algorithm PageRank by Google [1]. The choice of PageRank was motivated

by the fact that it is well-known and used in many scientific fields beyond IT [6]. The

listings did not contain comments. The first listing contained 18 lines (with empty li-

nes 14 without) of Google Pregel code, which represents object-oriented programming

(OOP). The base code for this listing was taken from [7]. The second listing contained

21 lines of Erlang code (with empty lines – 16 without) for an earlier proposed model

(see below). The original listings did not contain line numbers.

3.2. Student experience survey

The second experiment took place during and after the course “Parallel Program-

ming” during April-May 2016. Masters students (35 in total) were asked about the

difficulties they experienced while mastering Erlang. The answers were supposed to

be given in a free form. The answers were analyzed, which included charting the most

frequent problems and most popular explanations. Of note, the answers had to first

be processed by generalizing them for better identification of the students preferences

since they were in a free form.

3.3. Erlang in research

For a research example, a parallel asynchronous graph representation model had been

suggested [8]. By now, the problem of graph representation in distributed heteroge-

neous systems is considered unsolved [5, 15]. In the case of a dynamically changing

graph structure, the problem is complicated by the need of dynamic load balancing.

Briefly, in [8], the author investigated and classified all existing graph representation

models and identified their drawbacks. Based on this, a new model was suggested

in order to alleviate or eliminate the drawbacks. For implementing the model, the

Erlang programming language developed by the Ericsson company was chosen for dis-

tributed fault-tolerant soft real-time systems [2]. For the experiments, typical basic

operations were chosen, such as a search for the maximum weight edge or a search for

a path between two vertices in a De Bruijn graph [3,14]. The results of the study were

presented at a number of events, including the international functional programming

conference “Lambda Days 2015” in Krakow, Poland. The research demonstrated the

superiority of the proposed model over a traditional representation as an adjacency

matrix, implemented in C++ and OpenMP.
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The code-readability survey was performed in April 2016. The survey method

was described in the previous section. The respondents were asked the following

questions:

• Which of these two listings is clearer? Respondents were supposed to choose one

of the following answers: the first one, the second one, or both listings are equally

clear and readable.

• Why? The answers to this question were given in a free form. Answers were

generalized for finding common patterns.

• To which group does the respondent belong? The following groups were identi-

fied:

– programmers (who were supposed to convey their professional opinion;

however, a priori they were also likely to represent the widespread concept

of the superiority of object-oriented languages and C-like syntax);

– mathematicians and physicists (supposed to be more loyal to functional

programming);

– other professionals related to programming (such as system administrators),

and finally;

– professionals not related to programming.

The computer code listings are presented below. For Erlang, the listing does not

contain full code but only meaningful functions equal to the Pregel listing.

Listing 1: Pregel

1 import p r e g e l

2

3 c l a s s PageRankVertex ( p r e g e l . Vertex ) :

4

5 de f update ( s e l f ) :

6 i f s e l f . super s t ep < 50 :

7 s e l f . va lue =0.15∗1/ num vert i ces +0.85∗sum

( s e l f . messages )

8 s e l f . messages= [ ( s e l f . va lue /

num ad jacent ve r t i c e s )

9 f o r each adjacent ver tex ]

10 e l s e :

11 s e l f . a c t i v e = False

12

13 num vert i ces = 10

14 f o r each ver tex :

15 ver tex . va lue=1/num vert i ces

16

17 run p r e g e l

18 output va lue s f o r a l l v e r t i c e s
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Listing 2: Erlang

1 r e c e i v e

2 {pagerank ,N}−> pagerank : rank (N, LoC) ;

3

4 rank (0 ,LoC , Rank)−> Rank ;

5

6 rank (N, LoC , Rank)−> Nrank=0.15/ pagerank : number ( ) +0 ,85∗
pagerank : sum ( ) ,

7 l i s t s : f o r each ( fun (V)−> V! Nrank/ length (LoC) end ,

LoC) ,

8 rank (N−1,LoC , Nrank ) .

9

10 number ( )−> master ! number ,

11 r e c e i v e

12 Num−> Num

13 end .

14

15 sum ( )−> sum( length (LoC) ,0 ) .

16

17 sum(0 ,Sum)−> Sum;

18 sum(N,Sum)−>
19 r e c e i v e

20 { rank , Rank}−> sum(N−1,Sum+Rank)

21 end .

The authors’ expectations were as follows:

• Most of the programmers chose the Pregel option, while the “Both” option was

second-most popular, and “Erlang” was chosen by the minority.

• While the majority of the “Related” group would still choose Pregel, the authors

were expecting a growth of popularity in the “Both” option and possibly in the

“Erlang” option.

• The majority of mathematicians would choose either “Both” or “Erlang.”

• The behavior of the “Not related” group was difficult to anticipate. On the one

hand, they would not be prejudiced against OOP nor FP; but on the other hand,

they might lack the skills and/or training for making an informed choice.

4. Results

The results are presented in Figure 1 and Table 1.
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a) b)

c) d)

Figure 1. Results of survey: a) distribution of answers among all respondents; b) distribution

of answers among programmers; c) distribution of answers among people related to

programming; d) distribution of answers among people unrelated to programming

Table 1

Results of survey

Answer Absolute number Group’s share [%] All respondents’ share [%]

Programmers

Google Pregel 25 64.1 26.6

Erlang 4 10.3 4.3

Both 10 25.6 10.6

Total 39 100 41.5

Related to programming specialists

Google Pregel 27 57.4 28.7

Erlang 10 21.3 10.6

Both 10 21.3 10.6

Total 47 100 50

Not related to programming specialists

Erlang 3 42.9 3.2

Both 4 57.1 4.3

Total 7 100 7.4

Mathematicians/physicists

Both 1 1 1.1

Total 1 100 1.1

Total 94 – 100

Unfortunately, the data about the mathematicians and physicists is non-

representative, as only one respondent from this group took part in the survey. By

accounting for all three variants of the answer, the “Programmers” and “Not related”
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categories differed the most (Fisher’s exact test p-value = 0.0016), while “Related” ver-

sus “Not related” differed to a lesser extent (p-value = 0.006). On the contrary, the dif-

ference between “Programmers” and “Related” was not detectable (p-value = 0.417).

Thus, the “Related” category was in a somewhat intermediate position, likely because

of being close to “Programmers” by training and background. The absence of such

a background might be the main reason for the abundance of those who favored Er-

lang (including “Both”) among “Not related”: as many as 11 out of 14, or 78.5%. For

comparison, this fraction among “Programmers” was 35.9%. As can be clearly seen

from this survey, most of the respondents who chose Google Pregel did so because of

syntax. Probably, most of them work or have experience with languages with C-like

syntax.

The second survey was executed on a group of first-year master students who

studied Erlang programming in their “Parallel Programming” course (in the “Sy-

stems without shared memory” section). During a crash course consisting of two

lectures, two seminars, two laboratory assignments, and one homework assignment,

the students had familiarized themselves with the basics of functional programming

in general and Erlang in particular; these basics included pattern-matching (similar

to Markov algorithms), variable single assignment, declarative programming, and the

actor model. The following problems were identified during the course:

1. Regarding pattern-matching, most (about 80%) of the students had problems

with generalizing patterns even in simple tasks and often used if/case expressions;

this made the code more difficult to read, debug, and refactor.

2. About 60% of the students pointed out that programming without shared me-

mory and with immutable variables is difficult.

3. Regarding syntax, about 50% of the students mentioned that the Erlang syntax

is very odd for them (Erlang has a slightly modified Prolog syntax). Most of

them pointed out that a C-like syntax would be more convenient.

5. Discussion

Functional programming has been gaining popularity recently, which makes teaching

it more important and in higher demand. Indeed, a number of well-known projects

(e.g., WhatsApp) use functional programming languages such as Erlang. On the other

hand, BMSTU wants to prepare specialists whose skills meet the requirements of the

labor market, and Erlang definitely is not so popular as Java or Python.

The authors suggest the following steps for solving these problems:

1. It is necessary to enlighten first- and second-year students about programming

paradigm diversity while urging them to follow the principle “each mastered pa-

radigm makes me stronger” (from the universities of Oxford and Gothenburg).

More information on functional programming should be added to general pro-

gramming courses, emphasizing the FP features and advantages like recursion,

lambda-calculations, etc.
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2. During the study of a new programming language, it is important to distinguish

between the language syntax, its paradigm, and its philosophy. The language

philosophy is unique to each language and is in fact a “best practices” guide

that helps programmers write efficient code. Even though some languages can

share syntax and paradigms, their cores might be optimized for different use

cases, making their philosophies differ (e.g., X10 and Java). Similar to many

other university teachers, the authors encountered a problem of students being

“addicted” to a certain syntax. They consider it necessary to “learn syntax”

upon which they will be able to code efficiently in any C-like language. Such

an attitude is counterproductive and makes students write and spread inefficient

code. As an example, a student who was used to Java and was learning Erlang

continued to practice the Java style instead of trying to rebuild his style for

writing efficient Erlang code while writing programs in Erlang, thereby ignoring

most of the FP aspects and Erlang’s best practices.

3. Hence, it appears necessary to add a “Functional programming” course in any

curriculum. Optional or mandatory courses in functional programming are found

in many Computer Science/Theoretical Informatics programs (for example, at

the universities of Oxford, Gothenburg, and La-Coruna as well as Munich Techni-

cal University). Haskell, Erlang, and LISP are examples of functional languages

taught in the aforementioned universities.
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