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Abstract. This article deals with the first hitting times of a Bessel process to
a square-root boundary. We obtain the explicit form of the distribution function of
the hitting time by means of zeros of the confluent hypergeometric function with
respect to the first parameter. In deducing the distribution function, the time that
a radial Ornstein–Uhlenbeck process reaches a certain point is very useful and plays
an important role. We also give its distribution function in the case that the starting
point is closer to the origin than the arrival site.
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1. INTRODUCTION

In the theory of mathematical finance, Bessel processes are significant in analyzing
CIR model, which gives the evolution of instant interest rates, and random times (e.g,
default time and optimal stopping time) are quite important objects. In particular,
the first hitting times of asset prices are useful for the theory of American options and
exotic derivative securities. For applications of Bessel processes and first hitting times
to mathematical finance, see [10,30] for example.

In probability theory, the first hitting time of one-dimensional diffusion process is
interesting and important in and of itself. The hitting time of Bessel process to a given
point has been especially investigated. The explicit form of its distribution function is
given in [16]. Asymptotic behavior of the tail probability is given in [16,17] and the
higher terms are discussed in [4, 14,19,20]. In addition, results on the density function
are in [3, 5, 15,23].

Our interest shifts towards the hitting time to a moving point rather than a fixed
point. In this article, we investigate the hitting time of the Bessel process to a point
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which goes away from the origin with time of order the square root of the time.
For ν ∈ R and a ≧ 0 let {Rν

a(t)}t≧0 be the Bessel process with index ν starting
from a. For p, q > 0 we write τν

a (p, q) for the infimum of s > 0 being subject to that
Rν

a(s) =
√
p2 + q2s. If ν ≧ 0 and a, b > 0, the explicit form of the expectation of

{1 + τa(b, b)}−ρ for ρ ≧ 0 is given in [29] by a ratio of the confluent hypergeometric
functions. Moreover it is mentioned in [9] that the Lamperti representation theorem
(cf. [24]) allows the extension of several results in [6, 7, 29]. In addition, we remark
that the time of the first arrival on a sphere of the d-dimensional Ornstein–Uhlenbeck
process with parameter 1/2 has high relevance to the first hitting time to a square-root
boundary of the Brownian motion moving on Rd. One-dimensional case is discussed
precisely in [27].

We should mention that the contribution of τν
a (p, q) in the theory of mathematical

finance. Pairs trading is an investment strategy to obtain profit from spread, which
is the difference of prices between two assets. The spread is expected to converge to
a certain level and thus mathematical formulation of optimization problem on the
pairs trading requires information on the first hitting time of a stochastic process
which has the mean-reversion. Ornstein–Uhlenbeck process is frequently used since
it is considered that this process is one of good candidates for describing the pair
value (e.g. [8]). With the help of the Cameron-Martin theorem and the time change
formula, we can find that the first hitting time to a sphere of Ornstein–Uhlenbeck
process moving on Rd is represented by τ

d/2−1
a (p, q) and the stochastic integral of

a suitable function over 0 to τd/2−1
a (p, q).

The purpose in this article is to provide the explicit form of the distribution function
of τν

a (p, q) in the case that ν > −1. We deduce a formula for the distribution function of
the first hitting time of the radial Ornstein–Uhlenbeck process, which is often called the
Ornstein–Uhlenbeck-Bessel process, and prove that this formula leads to the explicit
form of P (τν

a (p, q) ≦ t), which is represented by means of the zeros of the confluent
hypergeometric function with respect to the first parameter.

This article is organized as follows. In Section 2, an explicit form of the distribution
function of τν

a (p, q) is provided for a, p ≧ 0 and q > 0 with a ̸= p. In Section 3,
we show that the distribution function of τa(p, q) is represented by means of the hitting
time of a suitable radial Ornstein–Uhlenbeck process. Section 4 deals with the case
that a, p and q are all positive and investigate the first hitting time of the radial
Ornstein–Uhlenbeck process for the proof of our results on τν

a (p, q). Section 5 and
Section 6 are devoted to the proofs for a = 0 and p = 0, respectively. In addition,
we will use C1, C2, . . . , C22 for suitable constants which are independent of variables
throughout this paper.

2. SQUARE-ROOT BOUNDARY FOR BESSEL PROCESS

Bessel process with index ν ∈ R means the one-dimensional diffusion process with the
following generator:

1
2
d2

dx2 + 2ν + 1
2x

d

dx
.
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In the case that 2ν + 2 is a positive integer, this process can be represented as the
radial part of (2ν + 2)-dimensional Brownian motion and thus 2ν + 2 is often called
the dimension of the Bessel process. The boundary point ∞ is natural for any ν ∈ R.
The other boundary point is 0. It is an entrance but not exit boundary for ν ≧ 0 and
is an exit but not entrance boundary for ν ≦ −1. When −1 < ν < 0, the boundary 0 is
regular. Although a regular boundary is classified into several cases, we assume that 0
is instantaneously reflecting in this paper. For more details, see [1, 22] for example.
Throughout this paper we treat only the case that ν > −1. In this case, the transition
density function pν

0(t, x, y) with respect to the Lebesgue measure is given by

pν
0(t, x, y) = yν+1

xνt
exp

(
−x2 + y2

2t

)
Iν

(
xy

t

)

(e.g. [26, p. 446], [28, p. 579]), where Iν denotes the modified Bessel function of the
first kind of order ν.

Let a ≧ 0 and we write {Rν
a(t)}t≧0 for the Bessel process with index ν starting

from a. For p, q ≧ 0 let

τν
a (p, q) = inf{s > 0 ; Rν

a(s) =
√
p2 + q2s},

which is called the hitting time of the Bessel process {Rν
a(t)}t≧0 to the square-root

boundary, and remark that τν
a (p, 0) means the first hitting time of {Rν

a(t)}t≧0 to the
given point p.

The purpose in this section is to give an explicit form of the distribution function
of τν

a (p, q). In order to describe our results, we need to discuss the zeros of confluent
hypergeometric functions with respect to the first parameter. We use the usual notation
F and U for confluent hypergeometric functions of the first kind and the second kind,
respectively. The functions F and U are often called Kummer function and Tricomi
function, respectively.

Lemma 2.1. Let ν > −1, γ > 0 and x > 0.

(1) The function λ 7→ F (−λ, ν + 1, γx2) has countably many zeros and all zeros are
positive and of multiplicity 1. Moreover we write {λν,γ

n,x}∞
n=1 for the increasing

sequence of the zeros and have that

lim
n→∞

λν,γ
n,x

n2 = π2

4γx. (2.1)

(2) The function λ 7→ U(−λ, ν + 1, γx2) has countably many zeros and all zeros are
positive and of multiplicity 1. Moreover we write {κν,γ

n,x}∞
n=1 for the increasing

sequence of the zeros and have that κν,γ
n,x > n− 1 for each n ≧ 1.

Theorem 4.4 in [13] implies that Lemma 2.1 (2) has been already established.
Although it seems that we can carry out the similar computation for the proof
of Lemma 2.1 (1), we need quite complicated calculations to obtain the necessary
information on zeros of the function λ 7→ F (−λ, ν + 1, γx2). In this paper, we do not
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adopt the argument used in [13] and will apply the method given in [23]. The proof of
the first claim is deferred to Section 4.

For a function f of several variables the notation f ′ will be used to denote the
partial derivative with respect to the first variable and we finish the preparation for
giving an explicit form of the distribution function of τν

a (p, q). The following theorem
is one of our results and its proof is deferred to Section 4.

Theorem 2.2. Let ν > −1 and q > 0. For any t > 0 we have that, if 0 < a < p,

P (τν
a (p, q) ≦ t) = 1 −

∞∑

n=1

F (−λν,1/2
n,q , ν + 1, q2a2/2p2)

λ
ν,1/2
n,q F ′(−λν,1/2

n,q , ν + 1, q2/2)

(
1 + q2

p2 t

)−λν,1/2
n,q

(2.2)

and that, if 0 < p < a,

P (τν
a (p, q) ≦ t) = 1 −

∞∑

n=1

U(−κν,1/2
n,q , ν + 1, q2a2/2p2)

κ
ν,1/2
n,q U ′(−κν,1/2

n,q , ν + 1, q2/2)

(
1 + q2

p2 t

)−κν,1/2
n,q

. (2.3)

For the proof of Theorem 2.2 it is useful to represent the distribution function of
τν

a (p, q) by means of the first hitting time of a suitable radial Ornstein–Uhlenbeck
process. Details will be described in Section 3.

The remainder of this section is devoted to giving the result on the limiting case,
that is the case that either a = 0 or p = 0. We first give the result on the case that
a = 0.

Theorem 2.3. Let ν > −1 and p, q > 0. We have that

P (τν
0 (p, q) ≦ t) = 1 −

∞∑

n=1

1
λ

ν,1/2
n,q F ′(−λν,1/2

n,q , ν + 1, q2/2)

(
1 + q2

p2 t

)−λν,1/2
n,q

(2.4)

for any t > 0.

Since
lim
z→0

F (α, β, z) = 1 (2.5)

(cf. [25, p. 288]), it seems that (2.4) will be obtained by taking the limit of (2.2) as
a ↓ 0 and we find that this argument can be justified. Theorem 2.3 will be established
in Section 5.

The following theorem is the result on the case that p = 0.

Theorem 2.4. Let ν > −1 and a, q > 0. We have that

P (τν
a (0, q) ≦ t) = 1 −

∞∑

n=1

1
κ

ν,1/2
n,q U ′(−κν,1/2

n,q , ν + 1, q2/2)

(
a2

2t

)κν,1/2
n,q

(2.6)

for any t > 0.
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It is expected that (2.6) can be obtained by taking limit of (2.3) as p ↓ 0 with the
help of the fact that

U(α, β, x) = x−α(1 +O[x−1]) (2.7)
as x → ∞ (cf. [25, p. 289]). Unfortunately we do not find an appropriate calculation
for justifying this argument. However other argument leads us to Theorem 2.4 and
the proof will be given in Section 6.

3. BASIC PROPERTIES OF τν
a (p, q)

When we investigate τν
a (p, q), the first hitting time of a radial Ornstein–Uhlenbeck

process plays an important role. We start to give information on this process. For
ν ∈ R and γ > 0 the radial Ornstein–Uhlenbeck process with index ν and parameter
γ is the one-dimensional diffusion process with generator

Lν,γ = 1
2
d2

dx2 +
(

2ν + 1
2x − γx

)
d

dx
. (3.1)

In the case when γ = 0, we can regard this process as the Bessel process. Similarly
to the Bessel process, in the case when 2ν + 2 is a positive integer, this process is
represented as the radial part of the (2ν + 2)-dimensional Ornstein–Uhlenbeck process.
The classification of boundary points is the same as that of the Bessel process and
we omit the details. In the case when ν > −1, it is known that the transition density
pν

γ(t, x, y) with respect to the Lebesgue measure is represented by

pν
γ(t, x, y) = γyν+1

xν sinh γt exp
{
γ(ν + 1)t− γ(eγtx2 + e−γty2)

2 sinh γt

}
Iν

(
γxy

sinh γt

)

(cf. [1, pp. 139–140], [28, p. 581]). It is easy to show that pν
γ(t, x, y) is asymptotically

equal to pν
0(t, x, y) as γ ↓ 0.

Let a ≧ 0 and p, q > 0 with a ̸= p. Since {α−1Rν
αc(α2t)}t≧0 is identical in law with

{Rν
c (t)}t≧0 for each c ≧ 0 and α > 0, we have that, if p > 0,

P (τν
a (p, q) ≦ t) = P

(
inf

{
s > 0 ; Rν

qa/p

(
q2

p2 s

)
= q

√
1 + q2

p2 s

}
≦ t

)

= P

(
inf{s > 0 ; Rν

qa/p(s) = q
√

1 + s} ≦ q2

p2 t

)

for any t > 0, which coincides with

P

(
inf{s > 0 ; e−s/2Rν

qa/p(es − 1) = q} ≦ log
(

1 + q2

p2 t

))
. (3.2)

For γ > 0 let {Sν,γ
a (t)}t≧0 be a radial Ornstein–Uhlenbeck process with index ν

and parameter γ starting from a. We try to represent (3.2) by the distribution function
of the first hitting time of {Sν,γ

a (t)}t≧0 for a suitable γ. Let

σν,γ
b,c = inf{s > 0 ; Sν,γ

b (s) = c}
for b, c ≧ 0 with b ̸= c.
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Lemma 3.1. If p > 0, we have that

P (τν
a (p, q) ≦ t) = P

(
σ

ν,1/2
qa/p,q ≦ log

(
1 + q2

p2 t

))
(3.3)

for any t > 0.
Proof. It is known that the time change formula yields that {Sν,γ

a (t)}t≧0 is identical in
law with {e−γtRν

a((e2γt −1)/2γ)}t≧0. Thus (3.3) can be easily deduced from (3.2).

Formula (3.3) gives the probability that the Bessel process reaches a square-root
boundary.
Proposition 3.2. If p > 0 and a ̸= p, we have that

P (τν
a (p, q) < ∞) = 1. (3.4)

Proof. It follows from (3.3) that (3.4) is equivalent to P (σν,1/2
qa/p,q < ∞) = 1 and hence

we concentrate on showing that

P (σν,γ
b,c < ∞) = 1 (3.5)

for γ > 0, b ≧ 0 and c > 0 with b ̸= c.
We first consider the case that b ≠ 0. The Laplace transform of σν,γ

b,c has been
derived in [12, p. 325] and it follows that, for 0 < b < c

E[e−λσν,γ
b,c ] = F (λ/2γ, ν + 1, γb2)

F (λ/2γ, ν + 1, γc2) (3.6)

and that, for 0 < c < b

E[e−λσν,γ
b,c ] = U(λ/2γ, ν + 1, γb2)

U(λ/2γ, ν + 1, γc2) . (3.7)

Since E[e−λσν,γ
b,c ] converges to P (σν,γ

b,c < ∞) as λ ↓ 0, it is sufficient to give the limiting
values of F (α, β, x) and U(α, β, x) as α ↓ 0 for β > 0 and x > 0.

In order to avoid complicated indices, we use M(κ, µ, z) and W (κ, µ, z) for Whit-
taker functions Mκ,µ(z) and Wκ,µ(z), respectively. It is known that both M( · , µ, z)
and W ( · , µ, z) are holomorphic on C (cf. [2], [13, pp. 68–89]). Hence the formulas

F (α, β, x) = ex/2x−β/2M

(
β

2 − α,
β − 1

2 , x

)
, (3.8)

U(α, β, x) = ex/2x−β/2W

(
β

2 − α,
β − 1

2 , x

)
(3.9)

(cf. [25, p. 304]) give that

lim
α→0

F (α, β, x) = ex/2x−β/2M

(
β

2 ,
β − 1

2 , x

)
,

lim
α→0

U(α, β, x) = ex/2x−β/2W

(
β

2 ,
β − 1

2 , x

)
.
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Since
M

(
β

2 ,
β − 1

2 , x

)
= W

(
β

2 ,
β − 1

2 , x

)
= e−x/2xβ/2

(cf. [25, p. 305]), we conclude that

lim
α→0

F (α, β, x) = lim
α→0

U(α, β, x) = 1. (3.10)

Hence the right hand sides of (3.6) and (3.7) converge to 1 as λ ↓ 0, which yields (3.5)
for b ̸= 0.

We next consider the case that b = 0 and the calculation is easy since

E[e−λσν,γ
0,c ] = 1

F (λ/2γ, ν + 1, γc2) (3.11)

(cf. [12, p. 324]). In virtue of (3.10), we can obtain (3.5) for b = 0 by taking the limit
as λ ↓ 0.

4. THE DISTRIBUTION FUNCTION OF τν
a (p, q)

Our goal of this section is to prove Theorem 2.2. Formula (3.3) implies that it is
sufficient to give an explicit form of the distribution function of σν,γ

b,c for b, c > 0 with
b ̸= c.

The case that 0 < c < b has been discussed. Since the Laplace transform of σν,γ
b,c is

given as formula (3.7), the Heaviside expansion theorem (cf. [21, p. 281]) yields that

P (σν,γ
b,c ≦ t) = 1 −

∞∑

n=1

U(−κν,γ
n,c, ν + 1, γb2)

κν,γ
n,cU ′(−κν,γ

n,c, ν + 1, γc2)e
−2γκν,γ

n,ct

for any t > 0 (cf. [13, Theorem 5.1]). Hence we can conclude (2.3) by replacement
of b, c, γ and t with qa/p, q, 1/2 and log(1 + q2t/p2), respectively.

We concentrate on proving (2.2). When we discuss the case that 0 < b < c, it
seems that the similar computation to the case that 0 < c < b can be carried out since
the Laplace transform of σν,γ

b,c is given by the similar form. However we need quite
complicated calculations when we try to obtain the necessary information on zeros
of the function λ 7→ F (−λ, ν + 1, γb2) similarly. In this paper, we do not adopt the
argument used in [13] and will apply the method given in [23] to derive the density
function of σν,γ

a,b .
Since the generator of the radial Ornstein–Uhlenbeck process is given by (3.1),

a simple calculation shows that the speed measure m and the scale function s can be
chosen in the following way:

m(dx) = 2x2ν+1e−γx2
dx, s(x) =

x∫

1

y−2ν−1eγy2
dy (4.1)

(cf. [1, p. 138], [28, p. 518]).
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For a real valued function u on (0,∞) we define

u+(x) = lim
ε↓0

u(x+ ε) − u(x)
s(x+ ε) − s(x)

for x > 0 if the limit exists. In the case that u is differentiable, we have by (4.1) that

u+(x) = u′(x)x2ν+1e−γx2
. (4.2)

Lemma 4.1. For each λ > 0 the solution of the equation

Lν,γu(x) + λu(x) = 0, x > 0 (4.3)

together with the boundary condition

lim
x↓0

u(x) = 1, (4.4)

lim
x↓0

u+(x) = 0 (4.5)

is given by
uλ(x) = F

(
− λ

2γ , ν + 1, γx2
)
. (4.6)

Proof. We put v(x) = u(
√
x/γ) for x > 0. The standard calculation shows that (4.3)

yields that v satisfies the following equation:

xv′′(x) + (ν + 1 − x)v′(x) + λ

2γ v(x) = 0. (4.7)

It is known that the general solution of (4.7) is

u(x) = ζ1F

(
− λ

2γ , ν + 1, γx2
)

+ ζ2U

(
− λ

2γ , ν + 1, γx2
)
, (4.8)

where ζ1 and ζ2 are arbitrary constants (e.g. [25, p. 270]).
We shall decide the constants ζ1 and ζ2 satisfying (4.4) and (4.5). When we apply

asymptotic behavior of U(α, β, x) as x ↓ 0 given in [25, p. 288], we need to consider
that α is a negative integer or not since the leading term of U(α, β, x) contains 1/Γ (α).

We start to investigate the case that λ/2γ is not an integer. Since the asymptotic
behavior of U(α, β, x) as x ↓ 0 is different between the case that ν ≧ 0 and the case
that −1 < ν < 0, we need to consider these two cases individually and first treat the
case that ν ≧ 0. It can be easily obtained that

lim
z→0

|U(α, β, z)| = ∞ (4.9)

for β ≧ 1 unless α is an integer with α ≦ 0 (cf. [25, p. 288]). This gives that ζ2 must
be 0 and we deduce from (2.5) that ζ1 is equal to 1. Hence the function u satisfying
(4.3) and (4.4) is

u(x) = F

(
− λ

2γ , ν + 1, γx2
)
,
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which is the analytic function on R. With the help of (4.2) and (2.5), we can easily
check that this function satisfies (4.5) since

d

dz
F (α, β, z) = α

β
F (α+ 1, β + 1, z) (4.10)

holds (cf. [25, p. 264]).
We shall discuss the case that −1 < ν < 0. Note that

d

dz
U(α, β, z) = −αU(α+ 1, β + 1, z)

(cf. [25, p. 265]). Combining it with (4.10), we have that

u+(x) = − λ

ν + 1ζ1x
2ν+2e−γx2

F

(
− λ

2γ + 1, ν + 2, γx2
)

+ λζ2x
2ν+2e−γx2

U

(
− λ

2γ + 1, ν + 2, γx2
)
.

(4.11)

It follow from (2.5) that the first term of the right hand side of (4.11) converges to 0.
However (4.9) is not adequate for the decision of ζ2. We need further asymptotic
behavior and the following is useful:

U(α, β, z) = Γ (β − 1)
Γ (α) z1−β +O[1] (4.12)

as z → 0 for 1 < β < 2 unless α is an integer with α ≦ 0 (cf. [25, p. 288]). This gives
that the second term of the right hand side of (4.11) converges to a constant multiple
of ζ2 as x ↓ 0. In virtue of (4.5), we need to take ζ2 = 0. Moreover, combining (2.5)
and (4.4), we easily have that ζ1 = 1, which yields (4.6) for −1 < ν < 0.

It remains to consider the case that λ/2γ = n for an integer n ≧ 1. In this case,
the fundamental solutions of (4.7) are L(ν)

n (x) and l
(ν)
n (x), where

L(ν)
n (x) =

n∑

m=0
(−1)m

(
n+ ν

n−m

)
xm

m! ,

l(ν)
n (x) = x−(ν+1)/2ex/2W

(
−n− ν + 1

2 ,
ν

2 , xe
iπ

)

(cf. [2, p. 34]). The function L
(ν)
n is called the generalized (or associated) Laguerre

polynomial. We remark that

L(ν)
n (x) =

(
n+ ν

n

)
F (−n, ν + 1, x)

(cf. [25, p. 240]) and that

l(ν)
n (x) = eiπ(ν+1)/2exU(n+ ν + 1, ν + 1, xeiπ),
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which is obtained by (3.9). Hence the general solution of (4.3) can be expressed by

u(x) = ζ1F (−n, ν + 1, γx2) + ζ2e
γx2

U(n+ ν + 1, ν + 1, γx2eiπ).

This form is more useful than (4.8). When ν ≧ 0, we can easily see by (4.9) that the
second term diverges as x ↓ 0 if ζ2 ̸= 0. In virtue of (2.5), we obtain that the solution
of (4.3) satisfying (4.23) is the following:

u(x) = F (−n, ν + 1, γx2). (4.13)

We can show that this satisfies (4.5) by (2.5) and (4.10).
When −1 < ν < 0, we begin to decide ζ2 by using (4.5). Formula (4.2) yields that

u+(x) is equal to

− 2γn
ν + 1ζ2x

2ν+2e−γx2
F (−n+ 1, ν + 2, γx2) (4.14)

+ 2γζ2x
2ν+2U(n+ ν + 1, ν + 1,−γx2) (4.15)

+ 2γ(n+ ν + 1)ζ2x
2ν+2U(n+ ν + 2, ν + 2, γx2eiπ). (4.16)

We easily obtain that (2.5) gives that (4.14) vanishes as x ↓ 0 and it follows from
(4.12) that (4.16) is

2γ(n+ ν + 1)ζ2x
2ν+2

{
Γ (ν + 1)

Γ (n+ ν + 2)(γx2eiπ)−ν−1 +O[1]
}
.

which converges to

2γ−ν(n+ ν + 1)e−iπ(ν+1) Γ (ν + 1)
Γ (n+ ν + 2)ζ2 (4.17)

as x ↓ 0. For calcultion of (4.15) we need another precise asymptotic behavior of
U(α, β, z). For 0 < β < 1 we have that

U(α, β, z) = Γ (1 − β)
Γ (α+ 1 − β) +O[|z|1−β ]

as z → 0 (cf. [25, p. 288]). This yields that (4.15) converges to 0 as x ↓ 0 and hence
u+(x) is asymptotically equal to (4.17). We obtain by (4.5) that ζ2 = 0 and can
conclude (4.13) in virtue of (4.4) and (2.5).

We are now ready to prove Lemma 2.1 (1). To avoid the complicated indices, we
write u(λ, x) instead of uλ(x). The following lemma is a straightforward consequence
of the combination of Lemma 4.1 and Theorem 4.1 in [23].

Lemma 4.2. For each x > 0 the function λ 7→ u(λ, x) has countably many zeros.
Moreover all zeros are positive and of multiplicity 1.
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Let {ρν,γ
n,x}∞

n=1 be the increasing sequence of zeros of u( · , x). Lemma 4.2 gives that
u′(ρν,γ

n,x, x) ̸= 0 for each n ≧ 1. For each x > 0 we have by (4.1) that
x∫

0

y−2ν−1/2m(dy) = 2
x∫

0

y1/2e−γy2
dy < ∞,

x∫

0

y2ν+1/2s′(y)dy =
x∫

0

y−1/2eγy2
dy < ∞.

Hence the formula (4.2) in [23] yields that, for x > 0

lim
n→∞

ρν,γ
n,x

n2 =
[

1
π

x∫

0

{
m′(y)
s′(y)

}1/2
s′(y)dy

]−2
, (4.18)

where m′ is the density of the measure m with respect to the Lebesgue measure. In
virtue of (4.1) we have that

m′(x)
s′(x) = 2x4ν+2e−2γx2

(4.19)

and thus (4.18) gives that

lim
n→∞

ρν,γ
n,x

n2 = π2

2x. (4.20)

For each n ≧ 1 let λν,γ
n,x = ρν,γ

n,x/2γ and then (2.1) can be obtained obviously by
(4.20). It follows from Lemma 4.2 that

F (−λν,γ
n,x, ν + 1, γx2) = u(ρν,γ

n,x, x) = 0, (4.21)

which implies that each λν,γ
n,x is a zero of the function λ 7→ F (−λ, ν+1, γx2). In addition,

the formula
u′(λ, x) = − 1

2γ F
′
(

− λ

2γ , ν + 1, γx2
)
, (4.22)

which is derived by (4.6), implies that F ′(−λν,γ
n,x, ν + 1, γx2) ̸= 0. The proof of the first

claim of Lemma 2.1 is completed.
We next deal with the tail probability of σν,γ

b,c in the case that 0 < b < c and first
try to derive a formula for the density function of σν,γ

b,c , which is denoted by pν,γ
b,c .

Proposition 4.3. Let ν > −1, γ > 0 and 0 < b < c. For any t > 0 we have that

pν,γ
b,c (t) = 2γ

∞∑

n=1

F (−λν,γ
n,c, ν + 1, γb2)

F ′(−λν,γ
n,c, ν + 1, γc2)e

−2γλν,γ
n,ct. (4.23)

Proof. According to Theorem 6.1 in [23], if we succeed in proving that

1
u′(ρν,γ

n,x, x) = O[eερν,γ
n,x ] (4.24)
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as n → ∞ for any x > 0 and ε > 0, we can obtain that, for t > 0

pν,γ
b,c (t) = −

∞∑

n=1

u(ρν,γ
n,c, b)

u′(ρν,γ
n,c, c)

e−ρν,γ
n,ct. (4.25)

In virtue of (4.22), it can be concluded that (4.25) is equivalent to (4.23). Hence we
may concentrate on showing (4.24).

With the help of Lemma 6.1 in [23], it is sufficient to prove that
m′(x)
s′(x) = O

[
|s(x)|−2−δ

]
(4.26)

as x ↓ 0 for a suitable constant δ > 0. In the case that ν > 0, it is easy to see by (4.1)
that, for 0 < x < 1

|s(x)| =
1∫

x

y−2ν−1eγy2
dy ≦ 1

2ν e
γx−2ν

and hence it follows from (4.19) that, for sufficiently small x > 0

0 ≦ |s(x)|2+1/ν m
′(x)

s′(x) ≦ C1.

This leads to (4.26) for δ = 1/ν.
When ν = 0, the proof of (4.26) is also easy. Indeed, since

|s(x)| =
1∫

x

y−1eγy2
dy ≦ eγ log 1

x

for 0 < x < 1, we have by (4.19) that, for sufficiently small x > 0

0 ≦ |s(x)|2+δm
′(x)

s′(x) ≦ C2x
2
(

log 1
x

)2+δ

,

where δ > 0 is arbitrarily given.
In the case that −1 < ν < 0, Lemma 6.2 in [23] immediately gives that (4.24)

holds since 0 is a regular boundary.

Proposition 4.3 leads us to the formula for the tail probability of σν,γ
b,c . It follows

from (3.5) and (4.23) that

P (σν,γ
b,c > t) = 2γ

∞∫

t

∞∑

n=1

F (−λν,γ
n,c, ν + 1, γb2)

F ′(−λν,γ
n,c, ν + 1, γc2)e

−2λν,γ
n,csds.

In order to change the order of the integral and the summation, we need to show the
convergence of

∞∑

n=1

∣∣∣∣
F (−λν,γ

n,c, ν + 1, γb2)
λγ,ν

n,cF ′(−λν,γ
n,c, ν + 1, γc2)

∣∣∣∣e−2λν,γ
n,ct (4.27)

for each t > 0. The argument used to obtain (6.1) in [13] works well.
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We start with giving an estimate of F (−λν,γ
n,c, ν + 1, γb2). For simplicity let

ξn = λν,γ
n,c + ν + 1

2 , ν0 = ν

2

and we note that (4.20) gives that ξn is asymptotically equal to a constant multiple
of n2 for large n. It follows from (3.8) that

F (−λν,γ
n,c, ν + 1, γb2) = eγb2/2(γb2)−(ν+1)/2M(ξn, ν0, γb

2).

Asymptotic behavior of M(ξ, µ, x) for large ξ is given by

M(ξ, µ, z) = Γ (1 + 2µ)z1/4
√
πξµ+1/4

{
sin

(
2
√
ξz − πµ+ π

4

)
+O

[
|ξ|−1/2

]}
(4.28)

if | arg(ξz)| < 2π (cf. [25, p. 318]). Hence we deduce that

|F (−λν,γ
n,c, ν + 1, γb2)| ≦ C3ξ

−ν0−1/4
n (4.29)

for any n ≧ 1.
We next aim to give a lower bound of |F ′(−λν,γ

n,c, ν + 1, γc2)| and recall obtaining
that F ′(−λν,γ

n,c, ν + 1, γc2) does not varnish for any n ≧ 1. In virtue of (3.8), we
have that

F ′(−λν,γ
n,c, ν + 1, γc2) = −eγc2/2(γc2)−(ν+1)/2M ′(ξn, ν0, γc

2). (4.30)

The following behavior of M ′ is useful for the estimate of (4.30):

M ′(ξ, µ, x) = Γ (1 + 2µ)x3/4
√
πξµ+3/4

{
cos

(
2
√
ξx− πµ+ π

4

)
+O

[
ξ−1/4

]}

as ξ → ∞ along the real line for µ ∈ R and x > 0 (cf. [13, Lemma 3.2]). This
yields that (4.30) is equal to a constant multiple of ξ−ν0−3/4

n (cosψ1
n +O[ξ−1/4

n ]), where
ψ1

n = 2c
√
ξnγ−πν0 +π/4. We need to deduce the limiting behavior of cosψ1

n as n → ∞
in order to obtain the estimate of the absolute value of (4.30). The combination of
(3.8) and (4.21) gives that M(ξn, ν0, γc

2) = 0 for each n ≧ 1 and thus (4.28) yields
that sinψ1

n converges to 0 as n → ∞, which is equivalent to the convergence of | cosψ1
n|

to 1. This implies that there exists an integer n0 ≧ 1 such that | cosψ1
n| ≧ 1/2 for any

n ≧ n0 and then we have that, for sufficiently large n

|F ′(−λν,γ
n,c, ν + 1, γc2)| ≧ C4ξ

−ν0−3/4
n . (4.31)

Since ξn is asymptotically equal to λν,γ
n,c, we obtain by (4.29) and (4.31) that

∣∣∣∣
F (−λν,γ

n,c, ν + 1, γb2)
F ′(−λν,γ

n,c, ν + 1, γc2)

∣∣∣∣ ≦ C5(λν,γ
n,c)1/2 (4.32)
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for any n ≧ 1. In virtue of (2.1), we can conclude that (4.27) converges for each t > 0.
The dominated convergence theorem yields that

P (σν,γ
b,c > t) =

∞∑

n=1

F (−λν,γ
n,c, ν + 1, γb2)

λν,γ
n,cF ′(−λν,γ

n,c, ν + 1, γc2)e
−2γλν,γ

n,ct

for any t > 0, which is equivalent to the following formula:

P (σν,γ
b,c ≦ t) = 1 −

∞∑

n=1

F (−λν,γ
n,c, ν + 1, γb2)

λν,γ
n,cF ′(−λν,γ

n,c, ν + 1, γc2)e
−2γλν,γ

n,ct (4.33)

Therefore, combining it with (3.3), we can deduce Theorem 2.2.

Remark 4.4. Let ϕν
a(t; p, q) be the density function of τν

a (p, q). Formula (3.3) yields
that ϕν

a(t; p, q) can be obtained by the density function pν,γ
b,c of σν,γ

b,c . We have already
derived pν,γ

b,c in (4.23) for 0 < b < c and in [13, p. 86] for 0 < c < b. For any t > 0 we
have that

ϕν
a(t; p, q) = q2

p2 + q2t

∞∑

n=1

F (−λν,1/2
n,q , ν + 1, a2q2/2p2)

F ′(−λν,1/2
n,q , ν + 1, q2/2)

(
1 + q2

p2 t

)−λν,1/2
n,q

if 0 < a < p and that

ϕν
a(t; p, q) = q2

p2 + q2t

∞∑

n=1

U(−κν,1/2
n,q , ν + 1, a2q2/2p2)

U ′(−κν,1/2
n,q , ν + 1, q2/2)

(
1 + q2

p2 t

)−κν,1/2
n,q

if 0 < p < a.

5. THE DISTRIBUTION FUNCTION OF τν
0 (p, q)

In this section we treat the case that a = 0 and our purpose is to give a proof of
Theorem 2.3. It seems that (2.4) will be obtained by taking the limit of (2.2) as
a ↓ 0. Even if we succeed in justifying to change the order of the limit for a and
the summation on n, we are not sure whether the distribution function of τν

a (p, q)
converges to that of τν

0 (p, q) or not. However we can get around this difficulty by using
the Laplace transform.

Assume that ν > −1 and p, q > 0. For b, c ≧ 0 let

σν
b,c = inf{s > 0 ; Rν

b (s) = c}.

Applying the Dynkin formula (cf. [22, p. 99]), we can easily derive by the standard
calculation that E[σν

b,c] = (c2 − b2)/(2ν + 2) for 0 ≦ b < c, which gives that

P (σν
b,c < ∞) = 1 (5.1)
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in this case. The strong Markov property yields that the Laplace transform of the
function t 7→ P (τν

0 (p, q) ≦ t) is

∞∫

0

dt e−λt

t∫

0

P (inf{s > 0 ; Rν
a(s) =

√
p2 + q2T + q2s} ≦ t− T )dµν

a(T ) (5.2)

for any a ∈ (0, p), where µν
a has been used to denote the probability law of σν

0,a. Change
the order of the integrals and thus (5.2) is equal to

∞∫

0

dµν
a(T )

∞∫

T

e−λtP (τν
a (

√
p2 + q2T , q) ≦ t− T )dt. (5.3)

We let
G(a, T, t) = P (τν

a (
√
p2 + q2T , q) > t)

and thus obtain by (3.4) that (5.3) is equal to
∞∫

0

dµν
a(T ) e−λT

∞∫

0

e−λt {1 −G(a, T, t)} dt,

which coincides with

1
λ

∞∫

0

e−λT dµν
a(T ) −

∞∫

0

dt e−λt

∞∫

0

e−λTG(a, T, t)dµν
a(T ).

Hence we have that the Laplace transform of P (τν
0 (p, q) ≦ t) is equal to

1
λ
E

[
e−λσν

0,a

]
−

∞∫

0

e−λtE
[
e−λσν

0,aG(a, σν
0,a, t)

]
dt. (5.4)

In order to calculating the limit of (5.4) with respect to a, we need to derive the
limiting values of σν

0,a and G(a, σν
0,a, t) as a ↓ 0 and start with deriving the limiting

value of σν
0,a.

Lemma 5.1. We have that
lim
a↓0

σν
0,a = 0 (5.5)

almost surely.

Proof. We can deduce (5.5) from the general theory of one-dimensional diffusion
processes (cf. [22, p. 108]).

Since σν
0,a ≦ σν

0,a′ with probability 1 for 0 < a < a′, there exists a random variable
σν

0 such that σν
0,a converges to σν

0 as a ↓ 0 almost surely. The Blumenthal 0–1 law
yields that the probability that σν

0 = 0 can be chosen only either 0 or 1. In the case that
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ν ≧ 0, since the boundary 0 is entrance but not exit, it is known that σν
0 = 0 almost

surely. If −1 < ν < 0, the boundary 0 is regular. In general, we can not decide the
value of P (σν

0 = 0). However, since we assume that 0 is an instantaneously reflecting
boundary, we conclude that P (σν

0 = 0) = 1.

The following lemma gives the limiting value of G(a, σν
0,a, t) as a ↓ 0.

Lemma 5.2. For any t > 0 we have that

lim
a↓0

G(a, σν
0,a, t) = G(t) (5.6)

almost surely, where G is a function on (0,∞) defined by

G(t) =
∞∑

n=1

1
λ

ν,1/2
n,q F ′(−λν,1/2

n,q , ν + 1, q2/2)

(
1 + q2

p2 t

)−λν,1/2
n,q

.

Before proving Lemma 5.2, we shall complete the proof of Theorem 2.3. It follows
from (5.5) that the first term of (5.4) converges to 1/λ as a ↓ 0. Moreover, applying
the dominated convergence theorem, we can easily show by (5.6) that the second term
of (5.4) converges to the Laplace transform of the function G as a ↓ 0, which yields
that ∞∫

0

e−λtP (τν
0 (p, q) ≦ t)dt =

∞∫

0

e−λt{1 −G(t)}dt.

Note that the function t 7→ P (τν
0 (p, q) ≦ t) is non-decreasing and hence we eventually

obtain that
P (τν

0 (p, q) ≦ t) = 1 −G(t) (5.7)
for any t > 0, which implies (2.4), by the following lemma.
Lemma 5.3. The function G is continuously differentiable on (0,∞) and

G′(t) = −ϕν
0(t; p, q) (5.8)

holds for any t > 0, where

ϕν
0(t; p, q) = q2

p2 + q2t

∞∑

n=1

1
F ′(−λν,1/2

n,q , ν + 1, q2/2)

(
1 + q2

p2 t

)−λν,1/2
n,q

.

This lemma will be shown after the proof of Lemma 5.2.
Remark 5.4. We have by (5.7) and (5.8) that the function t 7→ ϕν

0(t; p, q) is the
density function of τν

0 (p, q).
The remainder of this section is devoted to showing Lemmas 5.2 and 5.3. We start

with the proof of Lemma 5.2. For simplicity we use the notation λn for λν,1/2
n,q . Let

Gn(a, t) =
F (−λn, ν + 1, a2q2/2(p2 + q2σν

0,a))
λnF ′(−λn, ν + 1, q2/2)

(
1 + q2

p2 + q2σν
0,a

t

)−λn

.
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Combining (2.2) with (3.4), we have that G(a, σν
0,a, t) is the sum of Gn(a, t) on n over

[1,∞), which gives that (5.6) is equivalent to

G(t) = lim
a↓0

∞∑

n=1
Gn(a, t). (5.9)

Since (2.5) and (5.5) yield that

lim
a↓0

Gn(a, t) = 1
λnF ′(−λn, ν + 1, q2/2)

(
1 + q2

p2 t

)−λn

,

the formula (5.9) can be obtained if we succeed in showing that the order of the limit
for a and the summation on n can be changed in the right hand side of (5.9). Hence
we need to derive an upper bound of |Gn(a, t)| uniformly for small a. The following
estimate is quite useful.

Lemma 5.5. Let λ > 0 and |x| ≦ 1. For any δ > 0 we have that

|F (−λ, ν + 1, x)| ≦ e

{
(1 + δ)2λ

Γ (λ+ 1) +
(

1 + 1
δ

)2λ}
. (5.10)

The proof of Lemma 5.5 is deferred to the last part of this section. Let a be given in
the interval (0,min{q/p, p}). Note that 0 < σν

0,a < σν
0,p < ∞ almost surely. It follows

from (5.1) that q2t/(p2 + q2σν
0,p) is positive and hence we can take δ > 0 satisfying

that

0 < 1
δ
<

√
1 + q2t

p2 + q2σν
0,p

− 1. (5.11)

Applying (5.10) for λ = λn and x = a2q2/2(p2 + q2σν
0,a), we obtain that

∣∣∣∣F
(

−λn, ν + 1, a2q2

2(p2 + q2σν
0,a)

)∣∣∣∣ ≦ e

{
(1 + δ)2λn

Γ (λn + 1) +
(

1 + 1
δ

)2λn
}

for any n ≧ 1. Combining it with (4.31), we can deduce that

λn|Gn(a, t)| ≦ C6λ
ν/2+3/4
n

{
(1 + δ)2λn

Γ (λn + 1) + δλn
1

}
(5.12)

for sufficiently large n, where

δ1 = (1 + 1/δ)2

1 + q2t/(p2 + q2σν
0,p) .

Note that (5.11) gives 0 < δ1 < 1. Since

Γ (z) =
√

2π
z
ez(log z−1){1 +O[|z|−1]} (5.13)
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as |z| → ∞ (cf. [25, p. 12]), we obtain that the right hand side of (5.12) converges
to 0 as n → ∞ and, in particular, is bounded with respect to n. Hence we have by
(2.1) that |Gn(a, t)| ≦ C7n

−2 for any n ≧ 1. This leads to (5.9) and also (5.6). The
proof of Lemma 5.2 is finished.

We next try to show Lemma 5.3. Let t > 0 be fixed. The mean value theorem
yields that

∣∣∣∣
(

1 + q2

p2 t

)−λn

−
(

1 + q2

p2T

)−λn
∣∣∣∣ ≦

λnq
2

p2 + q2t/2

(
1 + q2

2p2 t

)−λn

|t− T |

for any T > t/2. Hence we have that by (4.31) that
∣∣∣∣

1
F ′(−λn, ν + 1, q2/2)

{(
1 + q2

p2 t

)−λn

−
(

1 + q2

p2T

)−λn
}∣∣∣∣

≦ C8q
2

p2 + q2t/2λ
ν/2+7/4
n

(
1 + q2

2p2 t

)−λn

|t− T |
(5.14)

uniformly for T > t/2. Note that (2.1) gives the summation of the right hand side of
(5.14) is a constant multiple of |t− T | and thus ϕν

0( · ; p, q) is continuous at any t > 0.
Moreover (5.14) yields that the absolute value of

1
λnF ′(−λn, ν + 1, q2/2)

(1 + q2t/p2)−λn − (1 + q2T/p2)−λn

t− T

is dominated by a constant multiple of

q2

p2 + q2t/2λ
ν/2+3/4
n

(
1 + q2

2p2 t

)−λn

(5.15)

uniformly for T > t/2. Since the summation of (5.15) on n over [1,∞) converges, we
have that

lim
T →t

G(t) −G(T )
t− T

=
∞∑

n=1

1
λnF ′(−λn, ν + 1, q2/2)

d

dt

(
1 + q2

p2 t

)−λn

,

which coincides with −ϕν
0(t; p, q). Hence (5.8) holds and we finish the proof of

Lemma 5.3.
It remains to show Lemma 5.5. The definition of the Kummer function F shows

that
|F (−λ, ν + 1, x)| ≦ 1 +

∞∑

n=1

|(−λ)n|
(ν + 1)n

|x|n
n! ,

where (α)n = α(α+ 1) · · · (α+ n− 1) for α ∈ R and n ≧ 1. Since

|(−λ)n| =
∣∣∣∣
n−1∏

k=0
(−λ+ k)

∣∣∣∣ ≦
n−1∏

k=0
(λ+ k) = (λ)n,
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we have that |F (−λ, ν + 1, x)| ≦ F (λ, ν + 1, 1) for |x| ≦ 1. The integral representation
of F gives that

F (λ, ν + 1, 1) = Γ (ν + 1)
Γ (λ)

∞∫

0

ξλ−ν/2−1e−ξIν(2
√
ξ)dξ

(cf. [25, p. 275]), where Iν is the modified Bessel function of the first kind of order ν.
Similarly to Theorem A.1 in [18], it can be proved that

Iν(y) ≦ yνey

2νΓ (ν + 1)
for y > 0. Hence, if |x| ≦ 1,

|F (−λ, ν + 1, x)| ≦ e

Γ (λ)

∞∫

0

ξλ−1e−(
√

ξ−1)2
dξ.

Let δ > 0 be arbitrarily given. We divide the integral on ξ in the right hand side into
the following two parts;

Λ1 =
(1+δ)2∫

0

ξλ−1e−(
√

ξ−1)2
dξ, Λ2 =

∞∫

(1+δ)2

ξλ−1e−(
√

ξ−1)2
dξ.

The estimate of Λ1 is easy. Indeed, it follows that

Λ1 ≦
(1+δ)2∫

0

ξλ−1dξ = (1 + δ)2λ

λ
.

For the estimate of Λ2 we change the variables from ξ to η given by η =
√
ξ − 1 and

then have that

Λ2 = 2
∞∫

δ

(η + 1)2λ−1e−η2
dη.

If λ ≧ 1/2, it follows from λ > 1/2 that Λ2 is dominated by

2
∞∫

δ

(
η + η

δ

)2λ−1
e−η2

dη ≦ 2
(

1 + 1
δ

)2λ−1 ∞∫

0

η2λ−1e−η2
dη

≦
(

1 + 1
δ

)2λ

Γ (λ).

When 0 < λ < 1/2, the calculation is easy. Indeed, we have that

Λ2 ≦ 2
∞∫

0

η2λ−1e−η2
dη = Γ (η).

Hence we obtain the claim of Lemma 5.5.
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6. THE DISTRIBUTION FUNCTION OF τν
a (0, q)

The purpose in this section is to show Theorem 2.4, which gives the explicit form of the
distribution function of τν

a (0, q). It can be easily shown by (2.7) that each summand
in the right hand side of (2.3) converges to the corresponding term of the right hand
side of (2.6) as p ↓ 0. Although we can justify to change the order of the limit for p
and the summation on n in the right hand side of (2.3), we do not find any proofs
of the convergence of τν

a (p, q) to τν
a (0, q) as p ↓ 0 in a suitable sense. The basic idea

for the proof of (2.6) is quite different from (2.4).
Let a, q > 0 be fixed and πν

p be the law of τν
a (p, q) for p > 0. The Laplace transform

of the function t 7→ P (τν
a (0, q) ≦ t) is equal to

∞∫

0

dt e−λt

t∫

0

P (inf{s > 0 ; Rν
α(p,q,T )(s) = q

√
T + s} ≦ t− T )dπν

p (T ) (6.1)

for any p ∈ (0, a), where α(p, q, T ) =
√
p2 + q2T . Change the order of the integrals

and thus (6.1) is equal to
∞∫

0

dπν
p (T )

∞∫

T

e−λtP (τν
α(p,q,T )(q

√
T , q) ≦ t− T )dt. (6.2)

We let
H(p, T, t) = P (τν

α(p,q,T )(q
√
T , q) > t)

and thus obtain by (3.4) that (6.2) is equal to
∞∫

0

dπν
p (T ) e−λT

∞∫

0

e−λt {1 −H(p, T, t)} dt,

which coincides with

1
λ

∞∫

0

e−λT dπν
p (T ) −

∞∫

0

dt e−λt

∞∫

0

e−λTH(p, T, t)dπν
p (T ).

Hence the Laplace transform of P (τν
a (0, q) ≦ t) is equal to

1
λ
E[e−λτν

a (p,q)] −
∞∫

0

e−λtE[e−λτν
a (p,q)H(p, τν

a (p, q), t)]dt, (6.3)

Asymptotic behavior of H(p, τν
a (p, q), T ) for p near a works essentially for the proof

of (2.6). Namely it is important to investigate the limiting behavior as p ↑ a not as p ↓ 0.
It is easy to give the limit of τν

a (p, q) as p ↑ a. Note that 0 < τν
a (p, q) ≦ σν

a,p almost
surely for 0 < p < a. Since σν

a,p converges to 0 as p ↑ a (cf. [22, p. 106]), we have that

lim
p↑a

τν
a (p, q) = 0 (6.4)

almost surely.
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For t > 0 let

H(t) =
∞∑

n=1

1
κ

ν,1/2
n,q U ′(−κν,1/2

n,q , ν + 1, q2/2)

(
a2

2t

)κν,1/2
n,q

, (6.5)

ϕν
a(t; 0, q) = 1

t

∞∑

n=1

1
U ′(−κν,1/2

n,q , ν + 1, q2/2)

(
a2

2t

)κν,1/2
n,q

. (6.6)

The following lemma holds.

Lemma 6.1. For any t > 0 we have that

lim
p↑a

H(p, τν
a (p, q), t) = H(t) (6.7)

almost surely. Moreover the function H on (0,∞) is continuously differentiable and

H ′(t) = −ϕν
a(t; 0, q) (6.8)

for any t > 0.

Before proving Lemma 6.1, we shall show that (6.4) and Lemma 6.1 complete
the proof of Theorem 2.4. The dominated convergence theorem yields that (6.3)
converges to

1
λ

−
∞∫

0

e−λtH(t)dt,

which implies that
∞∫

0

e−λtP (τν
a (0, q) ≦ t)dt =

∞∫

0

e−λt {1 −H(t)} dt.

Since H is continuously differentiable function, we have that P (τν
a (0, q) ≦ t) coincides

with 1 −H(q, t) for any t > 0. Hence (2.6) holds.

Remark 6.2. We have by (6.8) that the function ϕν
a( · ; 0, q) is the density of τν

a (0, q).

The remainder of this section is devoted to showing Lemma 6.1. We start with the
proof of (6.7) and simply write κn and τp instead of κν,1/2

n,q and τν
a (p, q), respectively.

Combining (2.3) and (3.4), we can obtain that

H(p, τp, t) =
∞∑

n=1
Hn(p, t), (6.9)

where
Hn(p, t) = U(−κn, ν + 1, q2/2 + p2/2τp)

κnU ′(−κn, ν + 1, q2/2)

(
1 + t

τp

)−κn

.
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Hence (6.9) gives that (6.7) is equivalent to

H(t) = lim
p↑a

∞∑

n=1
Hn(p, t). (6.10)

We now concentrate on proving (6.10). It follows from (2.7) and (6.4) that

lim
p↑a

U

(
−κn, ν + 1, q

2

2 + p2

2τp

)(
1 + t

τp

)−κn

=
(
a2

2t

)κn

almost surely, which implies that

lim
p↑a

Hn(p, t) = 1
κnU ′(−κn, ν + 1, q2/2)

(
a2

2t

)κn

with probability 1. Since the right hand side coincides with the n-th term of the sum-
mation in the right hand side of (6.5), it is sufficient to check that the order of the
limit for p and the summation on n can be changed in the right hand side of (6.10). In
order to apply the dominated convergence theorem, we aim to give a uniform estimate
of the absolute value of Hn(p, t) for a/2 < p < a. Let

hn(p) = U(−κn, ν + 1, q2/2 + p2/2τp)
κnU ′(−κn, ν + 1, q2/2)

and then Hn(p, t) = hn(p)(1 + t/τp)−κn holds. Thus we need to give a bound of the
absolute value of hn(p) for the estimate of Hn(p, t). Recall that ν0 has been used for
ν/2 in Section 4 and, in addition, let q0 = q2/2 for simplicity. It follows from (3.9)
that

|hn(p)| = ep2/4τp

(
1 + p2

q2τp

)−(ν+1)/2∣∣∣∣
W (ηn, ν0, q0 + p2/2τp)

κnW ′(ηn, ν0, q0)

∣∣∣∣, (6.11)

where
ηn = κn + ν + 1

2 .

We first give a bound of the first derivative of the Whittaker function of the second
kind with respect to the first parameter and can apply the argument which has been
used to derive (4.31).

Lemma 6.3. We have that

|W ′(ηn, ν0, q0)| ≧ C9e
−ηnηηn−1/4

n (6.12)

for large n.

Proof. Since each κn is a zero of the function κ 7→ U(−κ, ν + 1, q0), it follows from
(3.9) that

W (ηn, ν0, q0) = 0. (6.13)
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Recall that, for µ ∈ R and x > 0
W ′(η, µ, x) = W (η, µ, x) log η

−
√

2πx1/4e−ηηη−1/4
{

sin
(

2√
ηx− πη + π

4

)
+O[η−1/2]

}

as η → ∞ in η ∈ R (cf. [13, Lemma 3.3]). Hence (6.13) yields that

|W ′(ηn, ν0, q0)| =
√

2πq1/4
0 e−ηnηηn−1/4

n

∣∣∣sinψ2
n +O[η−1/2

n ]
∣∣∣ , (6.14)

where ψ2
n = 2√

ηnq0 − ηnπ + π/4. We need to give the limiting value of | sinψ2
n| for

large n.
Since

W (η, µ, x) =
√

2x1/4e−ηηη−1/4
{

cos
(

2√
ηx− πη + π

4

)
+O[η−1/2]

}
(6.15)

as η → ∞ along the real line for µ ∈ R and x > 0 (cf. [13, Lemma 3.1]), we
obtain by (6.13) that cosψ2

n converges to 0 as n → ∞, which instantly gives that
| sinψ2

n| converges to 1. Hence we can conclude that the right hand side of (6.14) is
asymptotically equal to

√
2πq1/4

0 e−ηnη
ηn−1/4
n for large n, which implies (6.12).

Since ηn = κn(1 + o[1]) as n → ∞, we have by (6.11) and (6.12) that |hn(p, q)| is
dominated by a constant multiple of

ep2/4τp

(
1 + p2

q2τp

)−(ν+1)/2
eηnη−ηn−3/4

n

∣∣∣∣W
(
ηn, ν0, q0 + p2

2τp

)∣∣∣∣. (6.16)

In order to obtain an upper bound of (6.16) with respect to p, we need to give a bound
of |W (η, µ, x)| with respect to η and x. However, since the error term of the right hand
side of (6.15) depends on x, a necessary estimate of W (η, µ, x) cannot be derived by
(6.15). The following lemma gives an appropriate estimate for obtaining the suitable
upper bound of (6.16).
Lemma 6.4. Let η > 0, µ ≧ 0 and x > q0. For any δ > 0 we have that

|W (η, µ, x)| ≦ C10e
−x/2xη(1 + δ)η + C11e

−x/2e−η

(
η + 1

2

)η(
1 + 1

δ

)η

. (6.17)

Proof. It is known that

W (η, µ, x) = 2x1/2ex/2

πi

c+∞i∫

c−∞i

ey2
y2ηK2µ(2y

√
x)dy (6.18)

for an arbitrary c > 0 (cf. [2, p. 73]), where K2µ is the modified Bessel function of the
second kind of order 2µ. We here put c =

√
x and have that the right hand side of

(6.18) is equal to

2x1/2ex/2

π

∞∫

−∞

e(
√

x+yi)2
(
√
x+ yi)2ηK2µ(2(

√
x+ yi)

√
x)dy.
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Recall that
|K2µ(z)| ≦ C12|z|−1/2e− Re z (6.19)

if |z| ≧ 2q0 and | arg z| < π (cf. [25, p. 139]). Since |2(
√
x + yi)

√
x| ≧ 2x for y ∈ R,

we can apply (6.19) and then have that

|K2µ(2(
√
x+ yi)

√
x)| ≦ C12x

−1/2e−2x,

which yields that

|W (η, µ, x)| ≦ C13e
−x/2

∞∫

0

e−y2
(y2 + x)ηdy. (6.20)

Let δ > 0 be arbitrarily given and we will give a bound of the integral in (6.20) by
dividing it into the following two parts:

Ξ1 =

√
δx∫

0

e−y2
(y2 + x)ηdy, Ξ2 =

∞∫

√
δx

e−y2
(y2 + x)ηdy.

The estimate of Ξ1 is easy. Indeed, it follows that

Ξ1 ≦

√
δx∫

0

e−y2
(δx+ x)ηdy ≦

√
π

2 (1 + δ)ηxη.

On the other hand, Ξ2 is dominated by
∞∫

√
δx

e−y2
(
y2 + y2

δ

)η

dy ≦
(

1 + 1
δ

)η
∞∫

0

e−y2
y2ηdt = 1

2

(
1 + 1

δ

)η

Γ

(
η + 1

2

)
.

Since (5.13) gives that Γ (x) is not larger than C14x
x−1/2e−x for any x > 1/2, a bound

of Ξ2 is a constant multiple of

e−η

(
1 + 1

δ

)η(
η + 1

2

)η

.

Hence we can conclude (6.17).

Let δ be fixed in (τa/2/t,∞) and p be arbitrarily given in (a/2, a). Lemma 6.4
yields that |W (ηn, ν0, q0 + p2/2τp)| is bounded by

C15e
−q0/2−p2/4τp(1 + δ)ηnqηn

0

(
1 + p2

q2τp

)ηn

+ C16e
−q0/2−p2/4τpe−ηn

(
ηn + 1

2

)ηn
(

1 + 1
δ

)ηn

.



Square-root boundaries for Bessel processes and the hitting times of. . . 169

Therefore |hn(p, t)| is not larger than the sum of the following;

C15η
−ηn−3/4
n {e(1 + δ)q0}ηn

(
1 + p2/q2τp

1 + t/τp

)κn

, (6.21)

C17η
−3/4
n

(
1 + 1

2ηn

)ηn
(

1 + t/τp

1 + p2/q2τp

)ν0+1/2(
1 + 1/δ
1 + t/τp

)ηn

. (6.22)

Let
θ1 = a2/4q2

τa/2 + t
, θ2 =

τa/2 + a2/q2

t
, θ3 = q2e(1 + δ)

2 .

Since 0 < τp < τa/2 < ∞, we have that

θ1 ≦ τp + a2/4q2

τp + t
≦ 1 + p2/q2τp

1 + t/τp
≦ τp + a2/q2

τp + t
≦ θ2.

This gives that (6.21) is dominated by C18η
−ηn−3/4
n θκn

2 θηn

3 and that (6.22) is less than
or equal to a constant multiple of

η−3/4
n

(
1 + 1

2ηn

)ηn

θ
−ν0−1/2
1 δηn

2 , (6.23)

where
δ2 = 1 + 1/δ

1 + t/τa/2
.

It is obvious that 1 < (1 + 1/2ηn)ηn ≦ e1/2 for n ≧ 1 since ex ≧ 1 + x for x ∈ R. It
follows that (6.23) is bounded by C19η

−3/4
n δηn

2 . Hence we obtain that

|Hn(p, t)| ≦ C18η
−ηn−3/4
n θκn

2 θηn

3 + C19η
−3/4
n δηn

2 . (6.24)

Since δ > τa/2/t, we have that 0 < δ2 < 1. We remark that ηn is asymptotically
equal to κn for large n and then obtain that the right hand side of (6.24) times κ2

n

converges to 0 as n → ∞. This gives that |Hn(p, t)| ≦ C20κ
−2
n for any n ≧ 1. Recall

that κn > n− 1, which has been indicated in Section 3, and then we have that the
sum of |Hn(p, t)| on n over [1,∞) converges. Hence we can apply the dominated
convergence theorem to (6.9) and obtain (6.4). This completes the proof of (6.7).

We lastly show the second claim of Lemma 6.1. Let t > 0 be given. Note that (3.9)
and (6.12) yield that

|U ′(−κn, ν + 1, q2/2)| ≧ C21e
−ηnηηn−1/4

n .

Since |t−κn − T−κn | ≦ κn(t/2)−κn−1|t− T | for T > t/2, we have that
∣∣∣∣

1
U ′(−κn, ν + 1, q2/2)

{(
a2

2t

)κn

−
(
a2

2T

)κn
}∣∣∣∣

≦ C22

(
a2

t

)κn

eηnη−ηn+5/4
n |t− T |.

(6.25)
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Since ηn > n + (ν − 1)/2 for n ≧ 1, the sum of the right hand side of (6.25) on n
is dominated by a constant multiple of |t − T |, which implies that ϕν

a( · ; 0, q) is
a continuous function on (0,∞). Moreover, applying (6.25), we have that a bound of
the absolute value of

1
κnU ′(−κn, ν + 1, q2/2)

(a2/2t)κn − (a2/2T )κn

t− T

is a constant multiple of (a2e/t)ηnη
−ηn+1/4
n , of which the summation on n converges.

Hence it follows that

lim
T →t

H(t) −H(T )
t− T

=
∞∑

n=1

1
κnU ′(−κn, ν + 1, q2/2)

(
a2

2

)κn d

dt
t−κn = −ϕν

a(t; 0, q),

which implies (6.8). The proof of Lemma 6.1 is completed.
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