PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model order reduction for a flow past a wall-mounted cylinder

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reduced order models allow quickly predict fluid behaviour and to better understand flow phenomena. They are the key enablers of closed-loop flow control. In this paper, reduced-order model (ROM) of an incompressible flow around a wall-mounted cylinder is constructed, by means of Galerkin projection of Navier–Stokes equations onto space spanned by the most dominant eigenmodes of dynamic mode decomposition (DMD). Additionally, genetic algorithm-based calibration is applied to improve the predictive performance of the model. The resulting low-dimensional model of the flow consists of six degrees of freedom and precisely reproduces the dynamics of limit cycle oscillations.
Słowa kluczowe
EN
Rocznik
Strony
161--176
Opis fizyczny
Bibliogr. 42 poz., rys. kolor.
Twórcy
  • Division of Virtual Engineering Institute of Combustion Engines and Transport Poznan University of Technology Piotrowo 3 60-965 Poznań, Poland
autor
  • Division of Virtual Engineering Institute of Combustion Engines and Transport Poznan University of Technology Piotrowo 3 60-965 Poznań, Poland
  • Division of Virtual Engineering Institute of Combustion Engines and Transport Poznan University of Technology Piotrowo 3 60-965 Poznań, Poland
autor
  • Division of Virtual Engineering Institute of Combustion Engines and Transport Poznan University of Technology Piotrowo 3 60-965 Poznań, Poland
autor
  • Faculty of Machines and Transportation Poznan University of Technology Piotrowo 3 60-965 Poznań, Poland
Bibliografia
  • 1. R. Bourguet, M. Braza, A. Sévrain and A. Bouhadji, Capturing transition features around a wing by reduced-order modeling based on compressible Navier–Stokes equations, Physics of Fluids, 21, 094104, 2009.
  • 2. J. Gerhard, M. Pastoor, R. King, B.R. Noack, A. Dillmann, M. Morzyński, G. Tadmor, Model-based control of vortex shedding using low-dimensional Galerkin models, 33rd AIAA Fluids Conference and Exhibit, Paper 2003-4262, 2003.
  • 3. B.R. Noack, K. Afanasiev, M. Morzyński, G. Tadmor, F. Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497, 335–363, 2003.
  • 4. W. Stankiewicz, M. Morzyński, R. Roszak, B.R. Noack, G. Tadmor, Reduced order modelling of a flow around an airfoil with a changing angle of attack, Arch. Mech., 60, 6, 509–526, 2008.
  • 5. B.R. Noack, M. Morzyński, G. Tadmor (eds.), Reduced-Order Modelling for Flow Control, Series: CISM International Centre for Mechanical Sciences, Vol. 528, Springer, 2011.
  • 6. S.L. Brunton, B.R. Noack, Closed-loop turbulence control: Progress and challenges, Applied Mechanics Reviews, 67, 5, 050801, 2015.
  • 7. J. Fröhlich, W. Rodi, LES of the flow around a circular cylinder of finite height, International Journal of Heat and Fluid Flow, 25, 3, 537–548, 2004.
  • 8. Ch. Dobriloff, W. Nitsche, Surface pressure and wall shear stress measurements on a wall mounted cylinder, Imaging Measurement Methods for Flow Analysis, 197–206, Springer, 2009.
  • 9. O. Frederich, J. Scouten, D.M. Luchtenburg, F. Thiele, Numerical simulation and analysis of the flow around a wall-mounted finite cylinder, Imaging Measurement Methods for Flow Analysis, 207–216, Springer, 2009.
  • 10. H.F. Wang, Y. Zhou, J. Mi, Effects of aspect ratio on the drag of a wall-mounted finite-length cylinder in subcritical and critical regimes, Experiments in fluids, 53, 2, 423–436, 2012.
  • 11. T. Kawamura, M. Hiwada, T. Hibino, I. Mabuchi, M. Kumada, Flow around a finite circular cylinder on a flat plate (cylinder height greater than turbulent boundary layer thickness), Bulletin of the JSME, 27, 232, 2142–2151, 1984.
  • 12. P. Sattari, J.A. Bourgeois, R.J. Martinuzzi, On the vortex dynamics in the wake of a finite surface-mounted square cylinder, Experiments in Fluids, 52, 5, 1149–1167, 2012.
  • 13. H. Sakamoto, S. Oiwake, Fluctuating forces on a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer, Journal of Fluids Engineering, 106, 2, 160–166, 1984.
  • 14. T. Igarashi, Heat transfer from a square prism to an air stream, International Journal of Heat and Mass Transfer, 28, 1, 175–181, 1985.
  • 15. H. Wang, Y. Zhou, C. Chan, T. Zhou, Momentum and heat transport in a finite-length cylinder wake, Experiments in Fluids, 46, 6, 1173–1185, 2009.
  • 16. J.A. Bourgeois, B.R. Noack, R.J. Martinuzzi, Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake, Journal of Fluid Mechanics, 736, 316–350, 2013.
  • 17. M. Ghommem, I. Akhtar, M.R. Hajj, I.K. Puri, A reduced-order model for unsteady flow over circular cylinder, 8th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, Paper 2010-1275, 2010.
  • 18. S. Ullmann, J. Lang, POD and CVT Galerkin reduced-order modeling of the flow around a cylinder, Proc. Appl. Math. Mech., 12, 1, 697–698, 2012.
  • 19. M. Morzyński, F. Thiele, 3D FEM Global Stability Analysis of viscous flow, Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics, vol. 4967, 1293–1302, Springer, 2008.
  • 20. M. Morzyński, F. Thiele, Finite Element Method for Global Stability Analysis of 3D Flows, 38th AIAA Fluid Dynamics Conference and Exhibition, Paper 2008-3865, 2008.
  • 21. F. Brezzi, On existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 8, (R2), 129–151, 1974.
  • 22. G. Berkooz, P. Holmes, J.L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Ann. Rev. Fluid Mech., 25, 1, 539–575, 1993.
  • 23. L. Sirovich, Turbulence and the dynamics of coherent structures. I-Coherent structures. II-Symmetries and transformations. III-Dynamics and scaling, Quarterly of Applied Mathematics, 45, 561–571, 1987.
  • 24. N. Aubry, R. Guyonnet, R. Lima, Spatiotemporal analysis of complex signals: theory and applications, Journal of Statistical Physics, 64, 2/3, 683–739, 1991.
  • 25. S. Siegel, J. Seidel, C. Fagley, D.M. Luchtenburg, K. Cohen, T. Mclaughlin, Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition, J. Fluid Mech., 610, 1, 1–42, 2008.
  • 26. C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, Int. J. Bifurcat. Chaos, 15, 3, 997–1013, 2005.
  • 27. K. Hasselmann, PIPs and POPs: the reduction of complex dynamical systems using principal interaction and oscillation patterns, Journal of Geophysical Research, 93, (D9), 11.015-11.021, 1988.
  • 28. A. Garcia, C. Penland, Fluctuating hydrodynamics and principal oscillation pattern analysis, Journal of Statistical Physics, 64, 5-6, 1121–1132, 1991.
  • 29. A. Lasota, M.C. Mackey, Chaos, fractals and noise: stochastic aspects of dynamics, Applied Mathematical Sciences, vol. 97, Springer, 1994.
  • 30. I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dyn., 41, 309–325, 2005.
  • 31. V. Uruba, Decomposition methods in turbulence research, EPJ Web of Conferences, 25, 01095, 2012.
  • 32. C.W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, D. Henningson, Spectral analysis of nonlinear flows, Journal of Fluid Mechanics, 641, 115–127, 2009.
  • 33. P.J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 1, 5–28, 2010.
  • 34. O. Frederich, D.M. Luchtenburg, Modal analysis of complex turbulent flow, 7th International Symposium on Turbulence and Shear Flow Phenomena, TSFP-7, 2011.
  • 35. S. Bagheri, Koopman-mode decomposition of the cylinder wake, J. Fluid Mech., 726, 596–623, 2013.
  • 36. L. Cordier, B. Abou El Majd, J. Favier, Calibration of POD reduced-order models using Tikhonov regularization, Int. J. Numer. Meth. Fluids, 63, 2, 269–296, 2009.
  • 37. W. Stankiewicz, R. Roszak, M. Morzyński, Genetic algorithm-based calibration of reduced order Galerkin models, Mathematical Modelling and Analysis, 16, 2, 233–247, 2011.
  • 38. B. Protas, J.E. Wesfreid, Drag force in the open-loop control of the cylinder wake in the laminar regime, Physics of Fluids, 14, 2, 810–826, 2002.
  • 39. G. Tadmor, J. Gonzalez, O. Lehmann, B.R. Noack, M. Morzyński, W. Stankiewicz, Shift modes and transient dynamics in low order, design oriented Galerkin models, 45rd AIAA Aerospace Sciences Meeting and Exhibit, Paper 2007-0111, 2007.
  • 40. M. Schlegel, B.R. Noack, On long-term boundedness of Galerkin models, J. Fluid Mech., 765, 325–352, 2015.
  • 41. M. Morzyński, W. Stankiewicz, B.R. Noack, R. King, F. Thiele, G. Tadmor, Continuous mode interpolation for control-oriented models of fluid flows, Active Flow Control, Springer, 260–278, 2007.
  • 42. W. Stankiewicz, M. Morzyński, B.R. Noack, G. Tadmor, Reduced order Galerkin models of flow around NACA0012 airfoil, Mathematical Modelling and Analysis, 13, 1, 113–122, 2008.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41ca8db8-a067-43b6-aacb-0ec7d7ec037c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.