Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Reduced order models allow quickly predict fluid behaviour and to better understand flow phenomena. They are the key enablers of closed-loop flow control. In this paper, reduced-order model (ROM) of an incompressible flow around a wall-mounted cylinder is constructed, by means of Galerkin projection of Navier–Stokes equations onto space spanned by the most dominant eigenmodes of dynamic mode decomposition (DMD). Additionally, genetic algorithm-based calibration is applied to improve the predictive performance of the model. The resulting low-dimensional model of the flow consists of six degrees of freedom and precisely reproduces the dynamics of limit cycle oscillations.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
161--176
Opis fizyczny
Bibliogr. 42 poz., rys. kolor.
Twórcy
autor
- Division of Virtual Engineering Institute of Combustion Engines and Transport Poznan University of Technology Piotrowo 3 60-965 Poznań, Poland
autor
- Division of Virtual Engineering Institute of Combustion Engines and Transport Poznan University of Technology Piotrowo 3 60-965 Poznań, Poland
autor
- Division of Virtual Engineering Institute of Combustion Engines and Transport Poznan University of Technology Piotrowo 3 60-965 Poznań, Poland
autor
- Division of Virtual Engineering Institute of Combustion Engines and Transport Poznan University of Technology Piotrowo 3 60-965 Poznań, Poland
autor
- Faculty of Machines and Transportation Poznan University of Technology Piotrowo 3 60-965 Poznań, Poland
Bibliografia
- 1. R. Bourguet, M. Braza, A. Sévrain and A. Bouhadji, Capturing transition features around a wing by reduced-order modeling based on compressible Navier–Stokes equations, Physics of Fluids, 21, 094104, 2009.
- 2. J. Gerhard, M. Pastoor, R. King, B.R. Noack, A. Dillmann, M. Morzyński, G. Tadmor, Model-based control of vortex shedding using low-dimensional Galerkin models, 33rd AIAA Fluids Conference and Exhibit, Paper 2003-4262, 2003.
- 3. B.R. Noack, K. Afanasiev, M. Morzyński, G. Tadmor, F. Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497, 335–363, 2003.
- 4. W. Stankiewicz, M. Morzyński, R. Roszak, B.R. Noack, G. Tadmor, Reduced order modelling of a flow around an airfoil with a changing angle of attack, Arch. Mech., 60, 6, 509–526, 2008.
- 5. B.R. Noack, M. Morzyński, G. Tadmor (eds.), Reduced-Order Modelling for Flow Control, Series: CISM International Centre for Mechanical Sciences, Vol. 528, Springer, 2011.
- 6. S.L. Brunton, B.R. Noack, Closed-loop turbulence control: Progress and challenges, Applied Mechanics Reviews, 67, 5, 050801, 2015.
- 7. J. Fröhlich, W. Rodi, LES of the flow around a circular cylinder of finite height, International Journal of Heat and Fluid Flow, 25, 3, 537–548, 2004.
- 8. Ch. Dobriloff, W. Nitsche, Surface pressure and wall shear stress measurements on a wall mounted cylinder, Imaging Measurement Methods for Flow Analysis, 197–206, Springer, 2009.
- 9. O. Frederich, J. Scouten, D.M. Luchtenburg, F. Thiele, Numerical simulation and analysis of the flow around a wall-mounted finite cylinder, Imaging Measurement Methods for Flow Analysis, 207–216, Springer, 2009.
- 10. H.F. Wang, Y. Zhou, J. Mi, Effects of aspect ratio on the drag of a wall-mounted finite-length cylinder in subcritical and critical regimes, Experiments in fluids, 53, 2, 423–436, 2012.
- 11. T. Kawamura, M. Hiwada, T. Hibino, I. Mabuchi, M. Kumada, Flow around a finite circular cylinder on a flat plate (cylinder height greater than turbulent boundary layer thickness), Bulletin of the JSME, 27, 232, 2142–2151, 1984.
- 12. P. Sattari, J.A. Bourgeois, R.J. Martinuzzi, On the vortex dynamics in the wake of a finite surface-mounted square cylinder, Experiments in Fluids, 52, 5, 1149–1167, 2012.
- 13. H. Sakamoto, S. Oiwake, Fluctuating forces on a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer, Journal of Fluids Engineering, 106, 2, 160–166, 1984.
- 14. T. Igarashi, Heat transfer from a square prism to an air stream, International Journal of Heat and Mass Transfer, 28, 1, 175–181, 1985.
- 15. H. Wang, Y. Zhou, C. Chan, T. Zhou, Momentum and heat transport in a finite-length cylinder wake, Experiments in Fluids, 46, 6, 1173–1185, 2009.
- 16. J.A. Bourgeois, B.R. Noack, R.J. Martinuzzi, Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake, Journal of Fluid Mechanics, 736, 316–350, 2013.
- 17. M. Ghommem, I. Akhtar, M.R. Hajj, I.K. Puri, A reduced-order model for unsteady flow over circular cylinder, 8th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, Paper 2010-1275, 2010.
- 18. S. Ullmann, J. Lang, POD and CVT Galerkin reduced-order modeling of the flow around a cylinder, Proc. Appl. Math. Mech., 12, 1, 697–698, 2012.
- 19. M. Morzyński, F. Thiele, 3D FEM Global Stability Analysis of viscous flow, Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics, vol. 4967, 1293–1302, Springer, 2008.
- 20. M. Morzyński, F. Thiele, Finite Element Method for Global Stability Analysis of 3D Flows, 38th AIAA Fluid Dynamics Conference and Exhibition, Paper 2008-3865, 2008.
- 21. F. Brezzi, On existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 8, (R2), 129–151, 1974.
- 22. G. Berkooz, P. Holmes, J.L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Ann. Rev. Fluid Mech., 25, 1, 539–575, 1993.
- 23. L. Sirovich, Turbulence and the dynamics of coherent structures. I-Coherent structures. II-Symmetries and transformations. III-Dynamics and scaling, Quarterly of Applied Mathematics, 45, 561–571, 1987.
- 24. N. Aubry, R. Guyonnet, R. Lima, Spatiotemporal analysis of complex signals: theory and applications, Journal of Statistical Physics, 64, 2/3, 683–739, 1991.
- 25. S. Siegel, J. Seidel, C. Fagley, D.M. Luchtenburg, K. Cohen, T. Mclaughlin, Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition, J. Fluid Mech., 610, 1, 1–42, 2008.
- 26. C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, Int. J. Bifurcat. Chaos, 15, 3, 997–1013, 2005.
- 27. K. Hasselmann, PIPs and POPs: the reduction of complex dynamical systems using principal interaction and oscillation patterns, Journal of Geophysical Research, 93, (D9), 11.015-11.021, 1988.
- 28. A. Garcia, C. Penland, Fluctuating hydrodynamics and principal oscillation pattern analysis, Journal of Statistical Physics, 64, 5-6, 1121–1132, 1991.
- 29. A. Lasota, M.C. Mackey, Chaos, fractals and noise: stochastic aspects of dynamics, Applied Mathematical Sciences, vol. 97, Springer, 1994.
- 30. I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dyn., 41, 309–325, 2005.
- 31. V. Uruba, Decomposition methods in turbulence research, EPJ Web of Conferences, 25, 01095, 2012.
- 32. C.W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, D. Henningson, Spectral analysis of nonlinear flows, Journal of Fluid Mechanics, 641, 115–127, 2009.
- 33. P.J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 1, 5–28, 2010.
- 34. O. Frederich, D.M. Luchtenburg, Modal analysis of complex turbulent flow, 7th International Symposium on Turbulence and Shear Flow Phenomena, TSFP-7, 2011.
- 35. S. Bagheri, Koopman-mode decomposition of the cylinder wake, J. Fluid Mech., 726, 596–623, 2013.
- 36. L. Cordier, B. Abou El Majd, J. Favier, Calibration of POD reduced-order models using Tikhonov regularization, Int. J. Numer. Meth. Fluids, 63, 2, 269–296, 2009.
- 37. W. Stankiewicz, R. Roszak, M. Morzyński, Genetic algorithm-based calibration of reduced order Galerkin models, Mathematical Modelling and Analysis, 16, 2, 233–247, 2011.
- 38. B. Protas, J.E. Wesfreid, Drag force in the open-loop control of the cylinder wake in the laminar regime, Physics of Fluids, 14, 2, 810–826, 2002.
- 39. G. Tadmor, J. Gonzalez, O. Lehmann, B.R. Noack, M. Morzyński, W. Stankiewicz, Shift modes and transient dynamics in low order, design oriented Galerkin models, 45rd AIAA Aerospace Sciences Meeting and Exhibit, Paper 2007-0111, 2007.
- 40. M. Schlegel, B.R. Noack, On long-term boundedness of Galerkin models, J. Fluid Mech., 765, 325–352, 2015.
- 41. M. Morzyński, W. Stankiewicz, B.R. Noack, R. King, F. Thiele, G. Tadmor, Continuous mode interpolation for control-oriented models of fluid flows, Active Flow Control, Springer, 260–278, 2007.
- 42. W. Stankiewicz, M. Morzyński, B.R. Noack, G. Tadmor, Reduced order Galerkin models of flow around NACA0012 airfoil, Mathematical Modelling and Analysis, 13, 1, 113–122, 2008.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41ca8db8-a067-43b6-aacb-0ec7d7ec037c