PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reducing Melt Surface Turbulence by Employing Surge and Filter in a Conventional Non-Pressurizing Gating System: Simulation and Experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tensile strength of aluminum castings has been improved by employing surge and filter in a conventional non-pressurizing gating system. For this purpose, three non-pressurizing bottom-gating systems were designed where the first design was a simple design with no filter and no surge, in the second design filter and in the third one surge was added to the end of runner. Tensile strength, Weibull module, scanning electron microscopy, chemical analysis, and melt pattern during the mold filling were thoroughly analyzed to compare these three designs. it was observed that employing filter and surge in the gating system reduces flow kinetic energy and consequently avoid surface turbulence and air entrainment, which leads to castings with fewer defects and higher reliabilities. Finally, it found that appropriate use of surge in the running system can be as effective as employing a filter in reducing melt front velocity.
Twórcy
autor
  • University of Iowa Department of Mechanical Engineering, Iowa City, IA, USA
autor
  • Iran University of Science and Technology School of Metallurgy and Materials Engineering, Tehran, Iran
  • University of Tehran Department of Metallurgical and Materials Engineering, Iran
  • Laval University, Department of Mining, Metallurgical and Materials Engineering, Québec, Canada
Bibliografia
  • [1] C. Reilly, N. R. Green, M. R. Jolly, Appl. Math. Model. 37, 611-628 (2013).
  • [2] S. G. Liu, F. Y. Cao, X. Y. Zhao, Y. D. Jia, Z. L. Ning, J. F. Sun, Mat. Sci. Eng. A 626, 159-164 (2015).
  • [3] M. A. El-Sayed, H. A. Salem, A. Y. Kandeil, W. D. Griffiths, Metall. Mater. Trans. B 45, 1398-1406 (2014).
  • [4] C. Nyahumwa, N. R. Green, J. Campbell, AFS Trans. 106, 215-223 (1998).
  • [5] T. Kargul, E. Wielgosz, J. Falkus, Arch. Metall. Mater. 60, 221-225 (2015).
  • [6] J. Campbell, N. R. Green, Trans. Amer. Found. Soc. 114, 341-347 (1994).
  • [7] M. A. El-Sayed, H. Hassanin, K. Essa, Int. J. Adv. Manuf. Technol. 86, 1173-1179 (2016).
  • [8] M. A. El-Sayed, W. D. Griffiths, Int. J. Cast Met. Res. 27, 282-287 (2014).
  • [9] J. Campbell, J. Mater. Sci. 51, 96-106 (2016).
  • [10] M. H. Ghanaatian, R. Raiszadeh, Mater. Sci. Technol. 33, 2-8 (2016).
  • [11] B. Zhang, S.L. Cockcroft, D. M. Maijer, J. D. Zhu, A. B. Phillion, JOM 57, 36-43 (2005).
  • [12] P. R. Raju, B. Satyanarayana, K. Ramji, K. S. Babu, Eng. Fail. Anal. 14, 791-800 (2007).
  • [13] M. Merlina, G. Timelli, F. Bonollob, G. L. Garagnania, J. Mater. Process. Technol. 209, 1060-1073 (2009).
  • [14] L. Sowa, A. Bokota, Arch. Metall. Mater. 57, 1163-1169 (2012).
  • [15] E. Omrani, P. L. Menezes, P. K. Rohatgi, Int. J. Eng. Sci. Technol. 19, 717-736 (2016).
  • [16] W. Griffiths, R. Raeiszadeh, J. Mater. Sci. 44, 3402-3407 (2009).
  • [17] A. Bahmani, N. Hatami, P. Davami, N. Varahram, M. Ostadsha-Bani, J. Adv. Manuf. Tech. 64, 1313-1321 (2012).
  • [18] X. Cao, J. Campbell, Metall. Mater. Trans. A 34, 1409-1420 (2003).
  • [19] J. Campbell, J. Runyoro, Foundaryman 85, 117-124 (1992).
  • [20] H. Hashemi, R. Raiszadeh, J. Appl. Sci. 9, 2115-2122 (2009).
  • [21] G. Eisaabadi Bozchaloeia, N. Varahram, P. Davami, S. K. Kim, Mater. Sci Eng. A. 548, 99-105 (2012).
  • [22] H. Bagherpoor-Torghabe, B. Niroumand, M. Karbasi, Int. J. Adv. Manuf. Technol. 75, 677-685 (2014).
  • [23] A. Anilchandra, L. Arnberg, F. Bonollo, E. Fiorese, G. Timelli, Materials. 10 (9), 1011-1023 (2017).
  • [24] M. A. El-Sayed, H. Hassanin, K. Essa, Int. J. Cast. Met. Res. 29, 350-354 (2016).
  • [25] S. H. Majidi, J. Griffin, C. Beckermann, Metall. Mater. Trans. B 49, 2599-2610 (2018).
  • [26] A. Kermanpur, S. H. Mahmoudi, A. Hajipour, J. Mater. Process. Technol. 206, 62-68 (2008).
  • [27] M. Prakash, P. Cleary, J. Grandfield, J. Mater. Process. Technol. 209, 3396-3407 (2009).
  • [28] A. Sanitas, M. Bedel, M. M. Mansori, J. Mater. Process. Technol. 254, 124-134 (2018).
  • [29] M. Shahmiri, Y. H. K. Kharrazi, IJE Trans. B 20, 155-166 (2007).
  • [30] F. Hsu, H. Lin, Metal. Mater. Trans. B 40, 833-842 (2009).
  • [31] S. I. Karsay, Ductile Iron III: Gating And Risering, 1981 Quebec Iron And Titanium Corporation.
  • [32] R. W. Heine, C. R. Loper, P. C. Rosental, Principle of Metal Casting. 1976 Tata McGrow-Hill.
  • [33] ASM Metals Handbook Volume 15, Casting, 2008 ASM International.
  • [34] Frank White, Fluid Mechanics, 2015 McGraw-Hill Higher Education.
  • [35] A. Baghani, A. Bahmani, P. Davami, N. Varahram, M. Ostad-Shabani, Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 229 (2), 106-1160 (2013).
  • [36] A. Kheirabi, A. Baghani, A. Bahmani, M. Tamizifar, P. Davami, M. Ostadshabani, A. Mazahery, Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 232 (3), 230-241 (2015).
  • [37] M. Tiryakioğlu, J. Campbell, J. Inter. Metal Cast. 8, 39-42 (2014).
  • [38] M. Tiryakioğlu, Metall. Mater. Trans. A 46, 270-280 (2015).
  • [39] G. Eisaabadi Bozchaloeia, P. Davami, S. K. Kim, M. Tiryakioğlu, Mater. Sci. Eng. A 579, 64-70 (2013).
  • [40] H. Y. Hwang, C. H. Nam, Y. S. Choi, J. H. Hong, X. Sun, China Foundry 14, 216-225 (2017).
  • [41] B. V. Antohe, J. L. Lage, D. C. Price, R. M. Weber, ASME. J. Fluids Eng. 119, 404-412 (1997).
  • [42] B. Skalerrud, T. Iveland, G. Harkegard, Eng. Fract. Mech. 44, 857-874 (2003).
  • [43] J. Campbell, S. Fox, Scripta Mater. 43, 881-886 (2000).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41c911b6-38ab-4047-8783-847be642bbe2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.