PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Study of Behavior of Vibrating Systems Controllable by Devices with Rheological Fluid

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nonlinear mathematical model of behavior of controllable viscosity fluid (CVF) under applied external field is presented. A large family of these fluids is commonly used to control responding forces of dampers in vibration control applications. The responding force of a damper with CVF has two components. The first one - uncontrollable - is proportional to the viscosity of a base fluid and velocity of its motion, the second one, which is controllable, depends on the strength of the applied external field. Both are involved in the process of dissipation of unwanted energy from the vibrating systems. An equivalent damping factor based on the principle of energy dissipated during one cycle of damper work under a constant strength external field was calculated. When mass or stiffness is variable the equivalent damping factor can be set accordingly by adjusting the strength of external field to have vibrating damped system purposely/continuously working in the critical or other chosen state. This paper also presents cases of applying periodically changing strengths of an external field synchronized with cycles of periodical motion of the vibrating system to continuously control the damping force within each cycle.
Rocznik
Strony
217--222
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
  • Department of Mechanical Engineering and Energy Processes, Southern Illinois University 1230 Lincoln Drive, Carbondale Ill 62901-6603 USA
autor
  • Department of Mechanical Engineering and Energy Processes, Southern Illinois University 1230 Lincoln Drive, Carbondale Ill 62901-6603 USA
Bibliografia
  • 1. Carlson J.D. (2008), Magnetorheological fluids, in: Smart Materials, CRC Press, New York, NY. USA.
  • 2. Carlson J.D., Cantanzarite D.M., Clair K.A.S. (1996), Commercial magneto-rheological fluid devices, International Journal of Modern Physics B, 10, 23-24, 2857-2865.
  • 4. Choi S.B., Hong S.R, Cheong C.C., Park Y.K. 3. Choi S.B., Hong S.R, Sung K.G., Sohn J.W. (2008), Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount, International Journal of Mechanical Sciences, 50, 559-568.
  • (1999), Comparison of field-controlled characteristics between ER and MR clutches, Journal of Intelligent Material Systems and Structures, 10, 615-619.
  • 5. Ginder J.M, Davis L.C., Elie L.D. (1995), Rheology of Magnetorheological Fluids. Models and Measurements, 5th Int. Conf. on ERF, MRS and Their Applications, Univ. Sheffield, UK.
  • 6. Jolly M.R, Carlson J.D., Munoz B.C. (1996), A Model of the Behavior of Magnetorheological Materials, Smart Materials and Structures., 5, 607-614.
  • 7. Kamath G.M., Werely N.M., Jolly M.R. (1999), Characterization of magnetorheological helicopter lagdampers, Journal of the American Helicopter Society, 44, 234-248.
  • 8. Kordonsky W. (1993), Magnetorheological Effect as a Base of New Devices and Technologies, Journal of Magnetorheology and Magnetorheological Materials, 122, 395-398.
  • 9. Nakano M.H., Yamamoto M.R, Jolly M.R. (1997), Dynamic Viscoelasticity of a Magnetorheological Fluidin Oscillatory Slit Flow, 6th Int. Conf. on ERF, MRS and Their Applications, Yonezawa, Japan.
  • 10. Pang L., Kamath G.M., Wereley N.M. (1997), Analysis and Testing of a Linear Stroke Magnetorheological Damper, AIAA/ASME Adaptive Structures Forum, Paper No. AIAA 98-2040, Long Beach, CA.
  • 11. Spencer Jr. B.F., Dyke S.J., Sain M.K., Carlson J.D. (1997), Phenomenological model for a magnetorheological damper, Journal of Engineering Mechanics ASCE, 123, 230-238.
  • 12. Szary M.L., (2002), Experimental Study of Sound Transmission Loss in Electrorheological Fluids Under DC Voltage, Archives of Acoustics, 27, 3, 229-240.
  • 13. Szary M.L., (2004), The Phenomena of Electrorheological Fluid Behavior between Two Barriers under Alternative Voltage, Archives of Acoustics, 29, 2, 243-258.
  • 14. Weiss K.D., Duclos T., Carlson J.D., Chrzan J.M., Margida A.J. (1993), High Strength Magneto and Electrorheological Fluids, Society of Automotive Engineers, SAE Paper 932451.
  • 15. Weiss K.D., Carlson J.D., Nixon D.A. (1994), Viscoelastic Properties of Magneto- and Electrorheological Fluids, Journal of Intelligent Material Systems and Structures, 5, 772-775.
  • 16. Yoo J.H., Wereley N.M. (2002), Design of a high efficiency magnetorheological valve, Journal of Intelligent Material Systems and Structures, 13, 679-685.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41c784ce-c33b-4a7c-86ae-6c209a0f5961
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.