PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of the service strategy in a queueing system with energy harvesting and customers’ impatience

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A single-server queueing system with an infinite buffer is considered. The service of a customer is possible only in the presence of at least one unit of energy, and during the service the number of available units decreases by one. New units of energy arrive in the system at random instants of time if the finite buffer for maintenance of energy is not full. Customers are impatient and leave the system without service after a random amount of waiting time. Such a queueing system describes, e.g., the operation of a sensor node which harvests energy necessary for information transmission from the environment. Aiming to minimize the loss of customers due to their impatience (and maximize the throughput of the system), a new strategy of control by providing service is proposed. This strategy suggests that service temporarily stops if the number of customers or units of energy in the system becomes zero. The server is switched off (is in sleep mode) for some time. This time finishes (the server wakes up) if both the number of customers in the buffer and the number of energy units reach some fixed threshold values or when the number of energy units reaches some threshold value and there are customers in the buffer. Arrival flows of customers and energy units are assumed to be described by an independent Markovian arrival process. The service time has a phase-type distribution. The system behavior is described by a multi-dimensional Markov chain. The generator of this Markov chain is derived. The ergodicity condition is presented. Expressions for key performance measures are given. Numerical results illustrating the dependence of a customer’s loss probability on the thresholds defining the discipline of waking up the server are provided. The importance of the account of correlation in arrival processes is numerically illustrated.
Rocznik
Strony
367--378
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • Department of Applied Mathematics and Computer Science, Belarusian State University, 4, Nezavisimosti Ave., Minsk, 220030, Belarus
autor
  • Division of Electronics, Chonbuk National University, Jeonju, 561-765, South Korea
autor
  • Department of Applied Mathematics and Computer Science, Belarusian State University, 4, Nezavisimosti Ave., Minsk, 220030, Belarus
Bibliografia
  • [1] Akyildiz, I., Su, W., Sankarasubramaniam, Y. and Cayirci, E. (2002). Wireless sensor networks: A survey, Computer Networks 38(4): 393–422.
  • [2] Atencia, I. (2014). A discrete-time system with service control and repairs, International Journal of Applied Mathematics and Computer Science 24(3): 471–484, DOI: 10.2478/amcs-2014-0035.
  • [3] Doshi, B. (1986). Queueing systems with vacations—a survey, Queueing Systems 1(1): 29–66.
  • [4] Dudin, A. and Klimenok, V. (1996). Queueing systems with passive servers, Journal of Applied Mathematics and Stochastic Analysis 9(2): 185–204.
  • [5] Dudina, O., Kim, C. and Dudin, S. (2013). Retrial queuing system with Markovian arrival flow and phase-type service time distribution, Computers & Industrial Engineering 66(2): 360–373.
  • [6] Gelenbe, E. (2015). Synchronising energy harvesting and data packets in a wireless sensor, Energies 8(1): 356–369.
  • [7] Kim, C., Dudin, A., Dudin, S. and Dudina, O. (2014). Analysis of an MMAP/PH1, PH2/N/∞ queueing system operating in a random environment, International Journal of Applied Mathematics and Computer Science 24(3): 485–501, DOI: 10.2478/amcs-2014-0036.
  • [8] Kim, C., Dudin, S. and Klimenok, V. (2009). The MAP/PH/1/N queue with flows of customers as model for traffic control in telecommunication networks, Performance Evaluation 66(9–10): 564–579.
  • [9] Klimenok, V. and Dudin, A. (2006). Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory, Queueing Systems 54(4): 245–259.
  • [10] Mészáros, A., Papp, J. and Telek, M. (2014). Fitting traffic with discrete canonical phase type distribution and Markov arrival processes, International Journal of Applied Mathematics and Computer Science 24(3): 453–470, DOI: 10.2478/amcs-2014-0034.
  • [11] Neuts, M. (1981). Matrix-geometric Solutions in Stochastic Models—An Algorithmic Approach, Johns Hopkins University Press, Baltimore, MD.
  • [12] Sharma, V., Mukherji, U., Joseph, V. and Gupta, S. (2010). Optimal energy management policies for energy harvesting sensor nodes, IEEE Transactions on Wireless Communications 9(4): 1326–1336.
  • [13] Takagi, H. (1991). Queueing Analysis: A Foundation of Performance Evaluation, North-Holland, Amsterdam.
  • [14] Tian, N. and Zhang, Z. (2006). Vacation Queueing Models—Theory and Applications, Springer, Heidelberg.
  • [15] Tutuncuoglu, K. and Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes, IEEE Transactions on Wireless Communications 11(3): 1180–1189.
  • [16] Yang, J. and Ulukus, S. (2012a). Optimal packet scheduling in a multiple access channel with energy harvesting transmitters, Journal of Communications and Networks 14(2): 140–150.
  • [17] Yang, J. and Ulukus, S. (2012b). Optimal packet scheduling in an energy harvesting communication system, IEEE Transactions on Communications 60(1): 220–230.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41c64b79-b222-4af4-af34-f281ad335a78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.