PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of Acoustic Emission Signals and Damage Analysis During the Tensile Test on Al8011 Hybrid Composites by Stir Casting Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metal network compounds have primary properties. The use of lightweight and low vitality is a testament to the growing interest in the automotive industry. Aluminum alloys, due to their advanced physical, mechanical and tribological properties, have become a highly emerging material for a variety of industrial applications and the importance of efficient material selection is explained. In this paper, an Al8011 hybrid metal matrix composite is developed through the stir casting process. The different weight proportions of B4C (3%, 6%, 9% & 12%) and fixed proportions of 2% MoS2 have been used. Composite developed are subjected to mechanical properties evaluation and seawater corrosion studies following standard procedures. To study the porosity of the composite samples, theoretical density and actual density are calculated. An acoustic emission system-assisted tensile test is carried out to report the strength of the composite. From this experimental method, adding reinforcement can increase the tensile strength and hardness of the composites. Under sea water, the increase in reinforcement found an increase in corrosion resistance. Fractured surfaces were perused using SEM and EDS analysis.
Słowa kluczowe
Twórcy
autor
  • Universal College of Engineering and Technology, Department of Mechanical Engineering, Vallioor, Tamilnadu, India
autor
  • University College of Engineering, Nagercoil, Department of Mechanical Engineering Tamilnadu, India
  • Amrita College of Engineering and Technology, Department of Mechanical Engineering, Amritagiri, Erachakulam (Po), Nagercoil, Tamil Nadu, India
Bibliografia
  • [1] Bhargavi Rebba, N. Ramanaiah, Investigations on Mechanical Behaviour of B4C and MoS2 Reinforced AA2024 Hybrid Composites, J. Manuf. Sci. Prod. 15, l 339-343 (2015).
  • [2] S. Ajith Arul Daniel, D. Sakthivel, P.M. Sudhagar, Gopal, Study on Tribological behaviour of Al/SiC/MoS2 hybrid metal matrix composites in high temperature environmental condition, Silicon 10, 2129-2139 (2018). DOI: https://doi.org/10.1007/s12633-017-9739-2
  • [3] S. Suresha, B.K. Sridhara, Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon carbide particulates, Compos. Sci. Technol. 70, 1652-1659 (2010). DOI: https://doi.org/10.1016/j.compscitech.2010.06.013
  • [4] B. Latha Shankar, K.C. Anil, P.J. Karabasappagol, Study on Effect of Graphite Particles on Tensile, Hardness and Machinability of Aluminium 8011 Matrix Material, Mater. Sci. Eng. 149, 012060 (2016). DOI: https://doi.org/10.1088/1757-899X/149/1/012060
  • [5] K.V. Sreenivasrao, K.C. Anil, K.G. Girish, Akash, Mechanical characterization of red mud reinforced Al8011 matrix composite, ARPN J. Eng. Appl. Sci. 11, 229-234 (2016).
  • [6] N. Saini, C. Pandey, S. Thapliyal, D.K. Dwivedi, Mechanical properties and Wear behavior of Zn and MoS2 reinforced surface composite Al-Si alloys using friction stir processing, Silicon 10, 1979-1990 (2018). DOI: https://doi.org/10.1007/s12633-017-9710-2
  • [7] Harun Mindivan, Reciprocal sliding wear behaviour of B4C particulate reinforced aluminum alloy composites, Mater. Lett. 64, 405-407 (2010). DOI: https://doi.org/10.1016/j.matlet.2009.11.032
  • [8] Suswagata Poria, Prasanta Sahoo, Goutam Sutradhar, Tribological characterization of stir-cast aluminium-TiB2 metal matrix composites, Silicon 8, 591-599 (2016). DOI: https://doi.org/10.1007/s12633-016-9437-5
  • [9] K. Soorya Prakash, R. Sathiya Moorthy, P.M. Gopal, V. Kavimani, Effect of reinforcement, compact pressure and hard ceramic coating on aluminium rock dust composite performance, Int. J. Refract. Metals. Hard Mater. 54, 223-229 (2016). DOI: https://doi.org/10.1016/j.ijrmhm.2015.07.037
  • [10] M. Uthayakumar, S. Thirumalai Kumaran, M. Adam Khan, S. Skoczypiec, W. Bizon, Microdrilling of AA (6351)-SiC-B4C Composite Using Hybrid Micro-ECDM Process, J. Test. Eval. 48 (2018). DOI: https://doi.org/10.1520/JTE20180216
  • [11] C. Emmy Prema, S. Suresh, G. Ramanan, M. Sivaraj, Characterization, corrosion and failure strength analysis of Al7075 influenced with B4C and Nano-Al2O3 composite using online acoustic emission, Mater. Res. Express. 7, 016524 (2020). DOI: https://doi.org/10.1088/2053-1591/ab6257
  • [12] C.M. Anand Partheeban, M. Rajendran, S.C. Vettivel, S. Suresh, N.S.V. Moorthi, Mechanical behaviour and failure analysis using online acoustic emission on nano-graphite reinforced ­Al6061-10TiB2 hybrid composite using powder metallurgy, Mat. Sci. and Eng. A 632, 1-13 (2015). DOI: http://dx.doi.org/10.1016/j.msea.2015.02.064
  • [13] M. Navaneetha Krishnan, S. Suresh, S.C. Vettivel, Characterization, formability, various stresses and failure analysis on workability of sintered Mg-5%B4C composite under triaxial stress state condition, J. of Alloys Compd. 747, 324-339 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.02.320
  • [14] S. Suresh, M. Navaneetha Krishnan, S.C. Vettivel. Effect of B4C on strength coefficient, cold deformation and work hardening exponent characteristics of Mg composites, J. Magnes. Alloy, (2020). DOI: https://doi.org/10.1016/j.jma.2020.09.010
  • [15] Shoufa Liu, Yinwei Wang, T. Muthuramalingam, G. Anbuchezhiyan, Effect of B4C and MoS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications, Compos. B. Eng. (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.107329
  • [16] J.S. David Joseph, B. Kumaragurubaran, S. Sathish, Effect of MoS2 on the Wear Behavior of Aluminium (AlMg0.5Si) Composite, Silicon 12, 1481-1489 (2020). DOI: https://doi.org/10.1007/s12633-019-00238-x
  • [17] Donghyun Lee, Junghwan Kim, Sang-Kwan Lee, Yangdo Kim, Sang-Bok Lee, Seungchan Cho, Experimental and thermodynamic study on interfacial reaction of B4CeAl6061 composites fabricated by stir casting process, J. of Alloys. Compd. 859, 157813 (2021). DOI: https://doi.org/10.1016/j.jallcom.2020.157813
  • [18] J. Hashim, L. Looney, M.S.J. Hashmi, Particle distribution in cast metal matrix composites Part I, J. Mater. Process. Technol. 123, 251-257 (2002). PII: S0924-0136(02)00098-5
  • [19] M. Saravana Kumar, S. Rashia Begum, C.I. Pruncu, Mehdi Shahedi Asl, Role of homogeneous distribution of SiC reinforcement on the characteristics of stir casted Al-SiC composites, J. Alloys. Compds. 869, 159250 (2021). DOI: https://doi.org/10.1016/j.jallcom.2021.159250
  • [20] M. Ying Zhang, Yue Li, Huan Sheng Lai, Chunmei Bai, Kang Lin Liu, Acoustic Emission Response and Damage Process for Q235 Steel in an in Situ Tensile Test, Archives of Acoustics 44, 807-813, (2019).
  • [21] S. Suresh, N. Shenbaga Vinayaga Moorthi, S.C. Vettivel, N. Selvakumar, G.R. Jinu, Effect of graphite addition on mechanical behavior of Al6061/TiB2 hybrid composite using acoustic emission, Mater. Sci. Eng. A 61216-27(2014). DOI: http://dx.doi.org/10.1016/j.msea.2014.06.024
  • [22] ASM International, Metal handbook: Non-destructive evaluation and quality control, Volume 9, ASM International, Ohio, (1995).
  • [23] Pabitra Maji, Rahul Kanti Nath, Pritam Paul, R.K. Bhogendro Meitei, Subrata Kumar Ghosh, Effect of processing speed on wear and corrosion behavior of novel MoS2 and CeO2 reinforced hybrid aluminum matrix composites fabricated by friction stir processing, J. Manuf. Process. 69, 1-11 (2021). DOI: https://doi.org/10.1016/j.jmapro.2021.07.032
  • [24] Manivannan, S. Ranganathan, S. Gopala Kannan, Mechanical Properties and Tribological Behavior of Al6061-SiC-Gr Self-Lubricating Hybrid Nanocomposites, Trans. Indian Inst. Met. (2018). DOI: https://doi.org/10.1007/s12666-018-1321-0
  • [25] M. Navaneetha Krishnan, S. Suresh, S.C. Vettivel, C. Emmy Prema, C.P. Jesuthanam, A Novel Image Processing Technique for Analyzing Wear Worn Surface Roughness and Corrosion Behavior of Sintered Mg/B4C Composites, Trans. Indian Inst. Met. (2020). DOI: https://doi.org/10.1007/s12666-020-02123-3
  • [26] S. Suresh, N. Shenbaga Vinayaga Moorthi, C. Emmy Prema, Tribological and Mechanical behavior study of Al6061-TiB2 Metal Matrix Composites using Stir Casting, Adv. Mat. Res. 984-985, 200-206 (2014). DOI: https://doi.org/10.4028/www.scientific.net/AMR.984-985.200
  • [27] Song-Jeng Huang, Murugan Subramani, Dawit Bogale Alemayehu, The effect of micro-SiCp content on the tensile and fatigue behavior of AZ61 magnesium alloy matrix composites, Int. J. Met. 15, 780-793 (2021). DOI: https://doi.org/10.1007/s40962-020-00508-0
  • [28] M. Navaneetha Krishnan, S. Suresh, S.C. Vettivel, Effects on Micro-Surface Texturing of Mg/B4C Matrix Composites Under Dry Sliding Wear Condition, Trans. Indian Inst. Met. (2020). DOI: https://doi.org/10.1007/s12666-020-01913-z
  • [29] N.G. Siddesh Kumar, R. Suresh, G.S. Shiva Shankar, High Temperature Wear Behavior of Al2219/n-B4C/MoS2 Hybrid Metal Matrix Composites, Compos. Commun. 19, 1-73 (2020).
  • [30] T.J. Holroyd, The acoustic emission and ultrasonic monitoring handbook, Coxmoor Publishing Company, UK, (2000).
  • [31] Hiroshi Kato, Shota Otsuka, Akitoshi Nonaka, Influence of casting defects on fatigue properties of SiC particulate dispersed aluminum alloy composite castings, Mater. Sci. Eng. A560, 717-726 (2013). DOI: http://dx.doi.org/10.1016/j.msea.2012.10.019
  • [32] Mehrdad Zolfaghari, Mohammad Azadi, characterization of highcycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys, Int. J. Met. (2020). DOI: https://doi.org/10.1007/s40962-020-00437-y
  • [33] M. Sambathkumar, P. Navaneethakrishnan, K.S.K. Sasikumar, R. Gukendran, K. Ponappa, Investigation of Mechanical and Corrosion Properties of Al 7075/Garnet Metal Matrix Composites by Two-stage Stir Casting Process, Arch. Metall. Mater. 66, 4, 1123-1129 (2021). DOI: https://doi.org/10.24425/amm.2021.136432
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41c4df3c-0038-4ac7-9bb6-46124ef2d175
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.