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Abstract
Higher-order mutants are created by injecting two or more mutations into the original program,
while first-order mutants are generated by seeding single faults in the original program. Mutant
generation is a key stage of mutation testing which is computationally very expensive, especially in
the case of higher-order mutants. Although many mutation testing techniques have been developed
to construct the first-order mutants, a very small number of techniques have been presented to
generate the higher-order mutants because of the exponential growth of the number of higher-order
mutants, and the coupling effect between higher-order and first-order mutants. To overcome the
exponential explosion in the number of higher-order mutants considered, this paper introduces
a new technique for generating a reduced set of higher-order mutants. The proposed technique
utilizes a data-flow analysis to decrease the number of mutation points through the program under
test and consequently reduce the number of higher-order mutants. In this technique only positions
of defs and uses are considered as locations to seed the mutation. The generated set of higher-order
mutants consists of a reduced number of mutants, which reduces the costs of higher-order mutation
testing. In addition, the proposed technique can generate the higher-order mutants directly without
generating the first-order mutants or by combining two or more first-order mutants. A set of
experiments are conducted to evaluate the effectiveness of the proposed technique. The results
of the conducted experiments are presented and compared with the results of the related work.
These results showed that the proposed technique is more effective than the earlier techniques in
generating higher-order mutants without affecting the efficiency of mutation testing.
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1. Introduction

Higher-order mutants (HOMs) are complex mu-
tants, which are produced by inserting two or
more mutations in the original program [1]. The
space of higher-order mutants is wider than the
space of first-order mutants (FOMs) [2]. Muta-
tion testing has been developed by DeMillo et al.
[3] and Hamlet [4] to find test inputs to kill the
seeded mutants in the program under test [5].
The motivation of mutation testing is that the
injected faults represent errors that programmers
often create. Although mutation testing is a very
powerful software testing technique, it contains

many computationally expensive phases such as
mutant generation and mutant execution.

Many mutation testing techniques have been
developed to consider the first-order mutants
[6]. Higher-order mutation testing techniques are
proposed by Jia and Harman [1] and used to
study the interactions between defects and their
impact on software testing for fault detection.

Although mutation testing is an effective high
automation technique to assess the quality of the
test data, it has three main limitations. These
limitations are large number of mutants, realism,
and the equivalent mutant problem [7,8]. A large
number of mutants will be generated during the
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mutant generation phase of mutation testing
even for small programs. For example, a program
consists of one statement such as return x + y;
(where x and y are integers) can be mutated into
many different mutants: return x−y; return x∗y;
return x/y; return x + y + +; return − x + y;
return x + −y; return 0 + y; return x + 0; ...,
etc. This problem leads to a very high execu-
tion cost because the test cases are executed
not only on original program but also on each
mutant. For example, if a program under test
has 200 mutants and 150 test cases, it requires
(1 + 200) ∗ 150 = 30150 executions with their cor-
responding results [7]. In addition, because mu-
tants are generated by single and simple syntactic
changes, they don’t represent realistic faults and
90% of real faults are complex [2]. In fact, sev-
eral mutation operators can generate equivalent
mutants which have the same behavior as the
original program and need additional human ef-
fort to kill [9]. These limitations are resulting
from the used method to generate mutants.

Many techniques have been proposed to re-
duce the number of mutants. The first approach
to reduce the number of mutants is Mutant Sam-
pling approach proposed by Acree [10] and Budd
[11]. In addition, Bluemke and Kulesza [12] ex-
plored the reduction of computational costs of
mutation testing by randomly sampling mutants.
This approach randomly selects a small subset
of mutants from the entire set. Mutant Sampling
is valid with a value higher than 10% of mutants
[7]. Agrawal et al. [13] and Mathur [14] proposed
an approach to reduce the number of mutation
operators which can lead to reduced number of
mutants. Offutt et al. [15,16] used the same idea
and called it Selective Mutation. This approach
selects a small set of operators that generate
a subset of all possible mutants without losing
test effectiveness. Husain [17] applied clustering
algorithms to select a subset of mutants.

Second-order Mutation Testing [9, 18–20], in
particular, and Higher-Order Mutation Testing
[1,2,21,22] in general, are the most promising so-
lutions to reduce the number of mutants [7]. The
number of generated mutants can be reduced to
about 50% by combining two first-order mutants
to generate a second-order mutant or by using

subsuming higher-order mutants algorithms [7].
Previous work employed different methods for
reducing the number of higher-order mutants.
Polo et al. [20] proposed three methods: 1) Ran-
domMix which couples randomly selected muta-
tion operators, 2) LastToFirst which combines
FOMs in order from the last operator to the first
one, and 3) DifferentOperator which combines
different FOMs mutation operators. Madeyski
et al. [9] proposed two methods: 1) JudyDiffOp
which combines different FOMs mutation oper-
ators, and 2) NeighPair which combines FOMs
which are close to each other. Although, these
techniques have the ability to reduce the number
of mutants, the number of mutants can still grow
exponentially. From the above discussion, the
higher-order mutant generation problem needs
a lot of effort.

Data-flow testing is essential because it aug-
ments control-flow testing. It aims at creating
more efficient and targeted test suites. Data flow
testing is concerned not only with the definitions
and uses of variables, but also with sub-paths
from definitions to statements where those def-
initions are used [23, 24]. A family of data flow
criteria [25] have been proposed and successfully
applied in many software testing activities [26].
Unfortunately, this family of criteria has never
been applied in mutation testing as basis for
generating the HOMs or reducing the number of
these mutants.

The main contributions of this paper are: 1)
introducing a data-flow based approach for gen-
erating higher-order mutants; In this approach
only locations of def points and use points are
considered as locations to seed the mutation.
A second-order mutant contains two mutations,
the first mutation at the def point and the second
mutation at the use point and the two points
belong to the same def-use pairs. 2) Using the
proposed approach to perform a set of empirical
studies to answer the following research ques-
tions:
– RQ1: How effective is data flow in aiding the

generation of higher-order mutants?
– RQ2: How effective is the proposed technique

in reducing the number of higher-order mu-
tants?
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Table 1. An example of mutants

Original Program Mutants
FOM1 FOM2 SOM

i f (min < max)
{
max = min + max ;
min = max − min ;

}

i f (min > max)
{
max = min + max ;
min = max − min ;

}

i f (min < max)
{
max = min − max ;
min = max − min ;

}

i f (min > max)
{
max = min − max ;
min = max − min ;

}

The rest of this paper is organized as follows.
Section 2 gives some basic concepts and defini-
tions. Section 3 describes the proposed technique
for generating a reduced set of higher-order mu-
tants. Section 4 describes the empirical studies
performed to evaluate the proposed technique.
Section 5 gives a discussion of how the present
paper differs from the related ones. Section 6
gives the conclusion and future work.

2. Background

This section introduces some basic concepts that
will be used throughout this work.

2.1. Mutation Testing

The input parameters to the mutation testing
are: the tested program P , a set of mutation
operators, and a set of test inputs, T. Initially,
the program under test must be executed with
the test set T to show that it is correct and
produces the desired outputs. If not, then the
program under test contains faults, which should
be corrected before resuming the process.

The next stage is generating a set of mu-
tants of the tested program by seeding faults in
it. The seeded faults are generated by applying

the mutation operators. The transformation that
creates a mutant from the original program is
known as a mutation operator [1]. A mutant is
generated by making one or more small changes
(faults) into the original program. FOMs, which
are created by the injection of unique faults in
the tested program, are created by applying mu-
tation operators only once. HOMs, which are
created by injecting two or more mutations into
the original program, are created by applying mu-
tation operators more than once. Table 1 shows
two first-order mutants (FOM1 and FOM2 ) gen-
erated by changing the “<” operator in the orig-
inal program into the “>” operator in FOM1
and changing the “+” operator in the original
program into the “−” operator in FOM2. In addi-
tion, Table 1 gives a second-order mutant, SOM,
created by coupling the two first-order mutants
FOM1 and FOM2.

In Traditional Mutation Testing (Strong Mu-
tation), each mutant will be executed using a test
set T. If the result of executing a mutant is dif-
ferent from the result of executing the original
program for any test case in T, then the mutant
is killed otherwise it is survived. The adequacy
level of the test set T can be measured by a mu-
tation score [27] that is computed in terms of
the number of mutants killed by T as follows.

MS(P, T ) = Number of Killed Mutants
Total Number of Mutants−Number of Equivalent Mutants (1)

Howden [6] proposed Weak Mutation [28]
to optimize the execution of Strong Mutation.
Weak Mutation checks the result of a mutant
immediately after the mutated component is exe-

cuted with the resulting execution of the original
component to say is the mutant is killed or not.
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2.2. Higher-order Mutation Testing

Higher-order mutation (HOM ) testing is a gen-
eralization of traditional mutation testing.
Higher-order mutants are constructed by insert-
ing two or more changes into the program under
test or by combining two or more first-order
mutants. Higher-order mutants can be classified
into six categories based on the way that they
are Coupled and Subsuming [1]. Coupled means:
complex errors are coupled to simple errors, and
the coupling effect hypothesis states that test
input sets that detect simple types of faults are
sensitive enough to detect more complex types
of faults [3]. A subsuming HOM is one in which
the first-order constituent mutants partly mask
one another. Therefore, a subsuming HOM is
harder to kill than the first-order mutants from
which it is constructed.

2.3. Data-flow Analysis

The structure of the program can be represented
by the control-flow graph. A control-flow graph
G = (N, E) with a unique entry node n0 and
a unique exit node nk, consists of a set N of
nodes, where each node represents a statement,
and a set E of directed edges, where a directed
edge e = (n, m) is an ordered pair of two adja-
cent nodes, called tail and head of e, respectively
[29,30].

Data-flow analysis identifies all definition-use
(def-use) pairs for any variable v of the program
under test. A def-use is the order triple (d, u, v)
in which statement d contains a definition for
variable v and statement u contains a use of v
that can be reached by d over some paths in
the program under test [23, 24]. A variable is
defined in a statement when its value is assigned
or changed. A variable is used in a statement
when its value is utilized in a statement and not
changed. A predicate use (p-use) for a variable
indicates the use of the variable in a predicate.
A computational use (c-use) indicates the use of
the variable in a computation.

3. A Proposed Higher-Order Mutant
Generation Technique

This section describes the proposed technique for
generating a reduced set of higher-order mutants.
This technique utilizes the concepts of data-flow
analysis of the program to reduce the number of
mutation positions through the tested program
which will reduce the number of higher-order
mutants. The proposed technique is based on
data-flow analysis [31] and Muclipse tool [32,33].
The proposed technique consists of the following
main modules.
1. Analysis Module.
2. Mutant Generation Module.
3. Mutant Filtering Module.
These modules are described in more detail be-
low.

3.1. Analysis Module

This module applies the data-flow analysis proce-
dure proposed by F.E. Allen and J. Cocke [31] to
find all definition-use pairs (all definition-c-use
and all definition-p-use) in the tested program.
This module reads the Java source code of
the program under test, builds the control-flow
graph of the tested program, and identifies all
definition-use pairs for each method in this Java
program individually. The proposed technique
reduces the number of def-p-use pairs by com-
bining all def-p-use pairs which have the same
def point (i.e., beginning statement of the edge
p-u) into one def-p-use pair where the use point
(end statement u) does not contain any uses. The
outputs of this phase are passed to the Mutant
Generation Module (step 2).

For the Java example program shown in Ta-
ble 2, this phase finds all definition-c-uses and
all definition-p-uses pairs in the tested program
by applying the proposed data-flow analysis pro-
cedure. The Analysis Module finds 10 def-c-use
pairs and 20 def-p-use pairs for method Mid-
num(). Table 3 shows all def-use pairs of method
Midnum() of the example program given in Ta-
ble 2. In Table 3, a def-c-use (d, cu, x) consists of
the statement “d” which contains a definition for
variable “x” which is used in a computation state-



Reducing the Number of Higher-order Mutants with the Aid of Data Flow 35

Table 2. Java example program

1. package edu.ncsu.csc326.paperHOM_dataflow; 29. {
2. public class Mid1 { 30. mid = y;
3. private int num1, num2, num3, Mid; 31. }
4. public Mid1(){ 32. else
5. } 33. {
6. public void setNum1(int x){ 34. if(x<z)
7. num1 = x; 35. {
8. } 36. mid = x;
9. public void setNum2(int x){ 37. }
10. num2 = x; 38. }
11. } 39. }
12. public void setNum3(int x){ 40. else
13. num3 = x; 41. {
14. } 42. if(x>=y)
15. public int getMid(){ 43. {
16. return Mid; 44. mid = y;
17. } 45. }
18. public void Midnum() 46. else
19. { 47. {
20. int x, y, z; 48. if(x>z)
21. int mid; 49. {
22. x = num1; 50. mid = x;
23. y = num2; 51. }
24. z = num3; 52. }
25. mid = z; 53. }
26. if(y<z) 54. Mid = mid;
27. { 55. }
28. if(x<y) 56. }

ment “cu” and a def-p-use (d, p-u, x) consists
of the statement “d” which contains a definition
for variable “x” which is used through the edge
“p-u” which starts at statement “p” and ends
at statement “u”. Then, the proposed technique
reduces the number of def-p-use pairs by merging
all def-p-use pairs which have the same def point.
Therefore, two def-p-use pairs such as (22, 28-39,
x) and (22, 28-32, x) will merge to one def-p-use
(22, 28, x). The proposed technique reduces the
20 def-p-uses to 10 def-p-uses. Table 3 gives the
new def-p-uses pairs. The list of def-c-uses and
the reduced def-p-uses are passed to the Mutant
Generation Module.

3.2. Mutant Generation Module

This module uses the data collected by the Anal-
ysis Module to generate the set of higher-order
mutants. This module considers only the loca-
tions of def points and use points as locations

to seed mutation. This module uses the set of
method-level operators proposed by Y. Ma and
J. Offutt [34] using the Muclipse tool [32,33] to
generate the first-order mutants. Table 4 shows
this set of mutation operators. This module re-
quires three inputs to perform its task (i.e., gen-
erating a set of higher-order mutants): the first
input is the Java source code of the program
under test, the second is the set of mutation
operators given in Table 4, and the third is the
set of mutation locations which is the location
of def and use statements (i.e., set of defs ∪ set
of uses) in the tested program. For the exam-
ple program given in Table 2, the set of muta-
tion locations is {22, 23, 24, 25, 30, 36, 44, 50} ∪
{36, 50, 30, 44, 25, 54, 28, 34, 42, 48, 26} = {22,
23, 24, 25, 26, 28, 30, 34, 36, 42, 44, 48, 50, 54}.

For generating first-order mutants, the pro-
posed technique needs a set of mutation op-
erators, a set of mutation locations, and the
program to be mutated. For the example pro-
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Table 3. All def-uses of method Midnum() of the example program

# def-c-uses def-p-uses Reduced def-p-uses

1 (22,36,x) (22,28-39,x) (22,28-32,x) (22,28,x)
2 (22,50,x) (22,34-35,x) (22,34-38,x) (22,34,x)
3 (23,30,y) (22,42-43,x) (22,42-46,x) (22,42,x)
4 (23,44,y) (22,48-49,x) (22,48-52,x) (22,48,x)
5 (24,25,z) (23,26-27,y) (23,26-40,y) (23,26,y)
6 (25,54,mid) (23,28-29,y) (23,28-32,y) (23,28,y)
7 (30,54,mid) (23,42-43,y) (23,42-46,y) (23,42,y)
8 (36,54,mid) (24,26-27,z) (24,26-40,z) (24,26,z)
9 (44,54,mid) (24,34-35,z) (24,34-38,z) (24,34,z)
10 (50,54,mid) (24,48-49,z) (24,48-52,z) (24,48,z)

Table 4. Set of mutation operators

Category Mutation
Operator Description

AO

AORB A binary arithmetic operator is replaced by another one.
AORU An unary arithmetic operator is replaced by another one.
AORS A short-cut arithmetic operator is replaced by another one.
AOIS A short-cut arithmetic operator is inserted into the program.
AOIU An unary arithmetic operator is inserted into the program.
AODS A short-cut arithmetic operator is deleted from the program.
AODU An unary arithmetic operator is deleted from the program.

RO ROR A relational operator is replaced by another one.

CO
COR A binary conditional operator is replaced by another one.
COI An unary conditional operator is inserted into the program.
COD An unary conditional operator is deleted from the program.

SO SOR A shift operator is replaced by another one.

LO
LOR A binary logical operator is replaced by another one.
LOI An unary logical operator is inserted into the program.
LOD An unary logical operator is deleted from the program.

AS ASRS A short-cut assignment operator is replaced by another one.

gram, the set of mutation locations is the
set of defs locations and uses locations =
{22, 23, 24, 25, 26, 28, 30, 34, 36, 42, 44, 48, 50, 54}
and the set of mutation operators is the 16 oper-
ators given in Table 4. The following pseudocode
presents the proposed DataFolwBasedFOM algo-
rithm for generating a reduced list of FOMs.
Algorithm DataFolwBasedFOM(program,

mutationPoints[], operators[])
LET firstOrderMutants be an empty list
WHILE mutationPoints.size() > 0 DO

WHILE !(oprators.empty()) DO
op = oprators.select();
mp = mutationPoints.select();

newMutant = program.mutate(op, mp);
firstOrderMutants.update(newMutant);

ENDWHILE
ENDWHILE
RETURN firstOrderMutants;

The function Operator.select() uses differ-
ent procedures to select an operator such as
1) not selected yet, 2) different operator, and
3) different category and the function mutation-
Points.select() selects a not selected yet mutation
position.

A second-order mutant contains two muta-
tions, the first mutation at the def position and
the second mutation at the use position and
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Figure 1. Mathematical representation of FOM and SOM

the two positions belong to the same def-use
pairs. Therefore, the set of second-order mu-
tants is the intersection between the set of
first-order mutants at defs locations with the set
of first-order mutants at uses locations. To gen-
erate second-order mutants, the proposed tech-
nique inserts two mutations into the original pro-
gram at the def and the use locations of the same
def-use pairs. It can also merge the two first-order
mutants at def and use positions of the same
def-use pairs to construct a second-order mutant.
Figure 1 shows a mathematical representation
for the first-order mutants and the second-order
mutants.

According to the above description the pro-
posed technique needs only mutation positions,
mutation operators, and the program to be mu-
tated to generate higher-order mutants without
needing the first-order mutants. The proposed
technique selects one of the elements of the set
of all def-use pairs and seeds this element with
two mutation operators: one operator is applied
at the def location and the second operator is
applied at the use location. The following pseu-
docode presents the proposed DataFolwBased-
SOM algorithm for generating the reduced list
of second-order mutants.
Algorithm DataFolwBasedSOM(program,

allDefUsePairs[], operators[])
LET secondOrderMutants be an empty list
WHILE allDefUsePairs.size()>0 DO

WHILE !(oprators.empty()) DO
op1 = oprators.select();
op2 = oprators.select();
du= allDefUsePairs.select();
newMutant=program.mutate(op1, op2,

du);
secondOrderMutants.update(newMutant);

ENDWHILE

ENDWHILE
RETURN secondOrderMutants;

The function Operator.select() uses different
procedures to select two operators such as 1) not
selected yet, 2) different operator, and 3) different
category and the function allDefUsePairs.select()
selects a not selected yet def-use pairs to be a mu-
tation point.

Table 5 (a) presents an example for sec-
ond-order mutant of the example program at the
def-c-use (22, 36, x) and Table 5 (b) presents an
example for second-order mutant of the example
program at the def-p-use (24, 48, z).

For generating higher-order mutants of even
order greater than the second-order, the proposed
technique applies the DataFolwBasedSOM algo-
rithm more than one time with a change of the
input program to the output or mutated program
of the previous cycle. To generate higher-order
mutants of odd order greater than the second or-
der, the proposed technique applies the DataFol-
wBasedSOM algorithm more than one time with
a change of the input program to the output or
mutated program of the previous cycle in such
a way that in the last cycle the algorithm seeds
one mutation operator at def or use location
only.

For example, for generating fourth-order mu-
tants the technique applies the DataFolwBased-
SOM algorithm two times in such a way that
the inputs of the second cycle are the mutated
programs (second-order mutants) of the first cy-
cle. To generate third-order mutants, the tech-
nique applies the DataFolwBasedSOM algorithm
two times such that the inputs of the second
cycle are the mutated programs of the first cycle
(second-order mutants) restricting the function
program.mutate(op1, op2, du) to seed one opera-
tor at the def location or at the use location only.
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Table 5. An example for second-order mutant of the example program

18. public void Midnum() 38. } 18. public void Midnum() 38. }
19. { 39. } 19. { 39. }
20. int x, y, z; 40. else 20. int x, y, z; 40. else
21. int mid; 41. { 21. int mid; 41. {
22. x = ++num1; 42. if(x>=y) 22. x = num1; 42. if(x>=y)
23. y = num2; 43. { 23. y = num2; 43. {
24. z = num3; 44. mid = y; 24. z = num3++; 44. mid = y;
25. mid = z; 45. } 25. mid = z; 45. }
26. if(y<z) 46. else 26. if(y<z) 46. else
27. { 47. { 27. { 47. {
28. if(x<y) 48. if(x>z) 28. if(x<y) 48. if(x<z)
29. { 49. { 29. { 49. {
30. mid = y; 50. mid = x; 30. mid = y; 50. mid = x;
31. } 51. } 31. } 51. }
32. else 52. } 32. else 52. }
33. { 53. } 33. { 53. }
34. if(x<z) 54. Mid = mid; 34. if(x<z) 54. Mid = mid;
35. { 55. } 35. { 55. }
36. mid *= x; 56. } 36. mid = x; 56. }
37. } 37. }

(a) SOM at du-pair (22,36,x) (b) SOM at du-pair (24,48,z)

Table 6 gives examples for third-order (3OMs)
and fourth-order (4OMs) mutants of the example
program given in Table 2.

3.3. Mutant Filtering Module

This module eliminates any useless mutants from
the generated set of higher-order mutants. This
module uses some criteria to divide the mutants
into two categories: the first category is the target
set of HOMs and the second one is the set of
useless mutants. These criteria are:
1. Redundant mutants: the repeated mutants

which were generated before.
2. First-order mutants: this happens if the muta-

tion location of the SOM refers to the same
position of the FOM (i.e., the same arith-
metic operator in the same statement). This
happens if the def location and use location
are in the same statement. For example in
the following loop:

1 i = 0 ;
2 sum = 0 ;
3 while ( i < 10)
4 sum = sum + i ;

In the above code, the def-use (4, 4, sum)
is a def-use at statement 4 for variable sum.

In this def-use pairs, the def location and
the use location are the same. Therefore, the
proposed algorithm can generate a first-order
mutant by changing the addition operator
“ + ” to the division operator “ / ” and chang-
ing the division operator “ / ” to the addition
operator “ + ”.

3. Equivalent mutants: this module can be sup-
ported by a technique for identifying the
equivalent mutants to remove it. In our ex-
periments, equivalent mutants are manually
identified.

4. Empirical Studies

This section describes the empirical studies per-
formed to evaluate the proposed technique. Two
empirical studies were conducted: the first study
aims to investigate the efficiency of data flow in
aiding the generation of higher-order mutants
and reducing their number as well; the second
study aims to demonstrate that the proposed
mutants do not lead to a substantial loss in the
effectiveness of the method.
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Table 6. An example for third and fourth order mutants of the example program

18. public void Midnum() 38. } 18. public void Midnum() 38. }
19. { 39. } 19. { 39. }
20. int x, y, z; 40. else 20. int x, y, z; 40. else
21. int mid; 41. { 21. int mid; 41. {
22. x = ++num1; 42. if(x>=y) 22. x = num1; 42. if(x>=y)
23. y = num2; 43. { 23. y = num2; 43. {
24. z = num3; 44. mid = y; 24. z = num3++; 44. mid = y;
25. mid = z; 45. } 25. mid = z; 45. }
26. if(y<z) 46. else 26. if(y<z) 46. else
27. { 47. { 27. { 47. {
28. if(x<y) 48. if(x>z) 28. if(x<y) 48. if(x<z)
29. { 49. { 29. { 49. {
30. mid = y++; 50. mid = x; 30. mid = ++y; 50. mid = x;
31. } 51. } 31. } 51. }
32. else 52. } 32. else 52. }
33. { 53. } 33. { 53. }
34. if(x<z) 54. Mid = mid; 34. if(x<z) 54. Mid = -mid;
35. { 55. } 35. { 55. }
36. mid *= x; 56. } 36. mid = x; 56. }
37. } 37. }
(a) 3OM at du-pairs (22,36,x), and (30,54,mid) (b) 4OM at du-pair (24,48,z) and (30,54,mid)

4.1. Empirical Study #1

4.1.1. Setup of Empirical Study #1

Prototype: Figure 2 gives the architecture of
the prototype HOMG, which consists of three
modules: an analysis module, a mutant gener-
ation module, and a mutants filtering module.
This prototype is based on the proposed tech-
nique which is presented in Section 3.
Subject Programs: A set of Java programs was
selected from the previous studies for conduct-
ing an empirical study to evaluate the proposed
technique. The set of subject programs contains
some common programs which are often used
as benchmarks in many software testing stud-
ies. This set of programs is triangle, mid, power,
remainder, and three synthetic programs with
different and complex structures.

Table 7 presents the details of the subject
programs: the first column, Subject Program,
presents a designated title of the program un-
der test; the second column, Reference, presents
some of the previous studies which used this set
of subject programs; and the third column, Scale,
presents the number of lines of code, classes, and
methods in the subject program.

Procedure: the empirical study is conducted
as follows.
1. Run Muclipse tool on the program to be

mutated (original program) to generate
FOMs. Because Muclipse cannot generate
second-order mutants mutants the Muclipse
tool was run on each first-order mutant to
generate all possible second-order mutants.
This set of second-order mutants is used for
comparing the LastToFirst Algorithm, Dif-
ferentOperators Algorithm, and our proposed
Algorithm.

2. Run the analysis module of our technique to
find all def-use pairs of the original program.

3. Run the mutants generation module accord-
ing to the DataFolwBasedSOM algorithm.
Then the useless mutants are removed.

4.1.2. Objectives of Study #1

The study procedure to measure the efficiency
of our proposed technique in generating the
second-order mutants was applied. This study
addresses the following research questions:
– RQ1: How effective is data flow in aiding the

generation of higher-order mutants?
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Java program to be mutated Finding
def-use pairs

Generating HOM s

Filtering the generated HOMs

Mutation Operators

Set of HOMs

Figure 2. The architecture of the prototype of HOMG

Table 7. Subject programs

# Subject Program Reference Scale

P#1. Triangle [2, 20,26,35] 73 LOC, 1 C, 6 M
P#2. Mid [20,26,36] 61 LOC, 1 C, 6 M
P#3. Power [26,36,37] 49 LOC, 1 C, 5 M
P#4. Remainder [26,36,37] 60 LOC, 1 C, 5 M
P#5. SyntheticProg1 [26] 65 LOC, 1 C, 5 M
P#6. SyntheticProg2 [26] 60 LOC, 1 C, 5 M
P#7. SyntheticProg3 [26] 62 LOC, 1 C, 5 M

– RQ2: How effective is the proposed technique
in finding a reduced set of higher-order mu-
tants?

4.1.3. Results and Discussion of Study #1

To answer the first research question RQ1,
the DataFolwBasedFOM algorithm to find the
first-order mutants was applied. According to the
procedure of the empirical study, the Muclipse
tool was run on the program to be mutated to
generate FOMs. Muclipse generates 1114 mu-
tated versions of the programs to be mutated.
Table 8 presents the number of first-order mu-
tants for each subject program, and the frequency
of each mutation operator.

The analysis modulefinds a list of def-c-use
pairs and def-p-use pairs for each subject pro-
gram. The analysis module finds 124 def-c-use
pairs for all subject programs and 196 def-p-use
pairs which are reduced to 98 def-p-use pairs.
The analysis module finds 320 du-pairs which
are reduced to 222 du-pairs for all subject pro-
grams. Table 9 presents the number of du-pairs
for each subject program. The mutant generation
module generates 122 mutated versions of the

programs to be mutated. This means that the
proposed technique reduced 89% of the num-
ber of first-order mutants generated by Muclipse
and presents the efficiency of data flow in aiding
the reduction of the number of mutants. Fig-
ure 3 shows the number of FOMs generated by
Muclipse and the proposed technique for each
subject program.

To answer the second research question RQ2,
the four techniques were applied: the Muclipse
tool, the LastToFirst Algorithm, the DifferentOp-
erators Algorithm, and the proposed DataFolw-
BasedSOM algorithm to generate all possible
second-order mutants. Table 10 presents the
number of second-order mutants (SOMs) gen-
erated by each one of these algorithms. Apply-
ing the Muclipse tool twice gives 186802 SOMs,
which represents the worst case. The proposed
algorithm generated 222 SOMs, while the Last-
ToFirst algorithm generated 559 SOMs, and
the DifferentOperators algorithm generated 595
SOMs for all subject programs. To compare the
last three algorithms in reducing the number
of higher-order mutants regarding FOMs, the
reduction value of FOMs generated by Muclipse
(RR1 = (FOMs−SOMs)/FOMs) was computed.
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Table 8. Details of FOMs using Muclipse

# Mutation Operators Total
AORB AOIU AODU ROR COD SOR LOI ASRS AORS AOIS AODS COR COI LOR LOD

P#1 4 13 0 40 0 0 30 0 0 118 0 4 10 0 0 219
P#2 0 9 0 10 0 0 19 0 0 76 0 0 5 0 0 119
P#3 16 8 1 5 0 0 7 0 0 48 0 0 3 0 0 88
P#4 20 13 1 25 0 0 24 0 0 96 0 2 7 0 0 188
P#5 32 12 0 25 0 0 20 0 0 80 0 0 5 0 0 174
P#6 16 12 0 20 0 0 22 0 0 88 0 0 5 0 0 163
P#7 36 10 0 15 0 0 20 0 0 78 0 0 4 0 0 163
Total 124 77 2 140 0 0 142 0 0 584 0 6 39 0 0 1114

Table 9. The number of du-pairs for each subject program

# Subject program dcu dpu Reduced dpu (Rdpu) dcu+Rdpu Mutation Points (mp)

P#1 16 72 36 52 22
P#2 10 20 10 20 14
P#3 14 10 5 19 13
P#4 24 30 15 39 21
P#5 20 20 10 30 18
P#6 22 28 14 36 19
P#7 18 16 8 26 15
Total 124 196 98 222 122
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Figure 3. The number of FOMs generated by Muclipse and the proposed technique

Table 10 and Figure 4 show the reduction ra-
tio of the 1114 first-order mutants generated by
the Muclipse tool for each subject program. Our
proposed algorithm reduced 88.07% of the 1114
FOMs, while the LastToFirst algorithm reduced
49.82%, and the DifferentOperators algorithm
reduced 46.59% of 1114 FOMs for all subject
programs. The results show that our proposed al-
gorithm outperforms the LastToFirst algorithm
by 38.25% and the DifferentOperators algorithm
by 41.48%.

To compare the last three algorithms in
reducing all possible number of higher-order
mutants, the Authors computed the reduction
value of SOMs generated by Muclipse (RR2 =
(MSOMs−ASOMs)/MSOMs) where MSOMs
is the number of second-order mutants generated
by Muclipse tool, and ASOMs is the number of
second-order mutants generated by one of the
other three algorithms. Table 12 and Figure 5
show the reduction ratio RR2 of the 186802
second-order mutants generated by the Muclipse
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Table 10. The number of second-order mutants generated by the three algorithms

# Subject program Muclipse LastToFirst DifferentOperators The proposed algorithm

P#1 47557 110 118 52
P#2 13935 60 76 20
P#3 7634 44 48 19
P#4 35028 94 96 39
P#5 29995 87 87 30
P#6 26304 82 88 36
P#7 26349 82 82 26
Total 186802 559 595 222

Table 11. Reduction % of the number of first-order mutants generated by the three algorithms

# Subject program LastToFirst DifferentOperators The proposed algorithm

P#1 49.77% 46.12% 76.26%
P#2 72.60% 65.30% 90.87%
P#3 79.91% 78.08% 91.32%
P#4 57.08% 56.16% 82.19%
P#5 60.27% 60.27% 86.30%
P#6 62.56% 59.82% 83.56%
P#7 62.56% 62.56% 88.13%
Total 49.82% 46.59% 80.07%
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Figure 4. Reduction percentage of FOMs using the three algorithms

tool for all subject programs. Our proposed al-
gorithm reduced 99.88% of all SOMs while the
LastToFirst algorithm reduced 99.70% and the
DifferentOperators algorithm reduced 99.68% of
186802 SOMs for all subject programs. The re-
sults show that our proposed algorithm outper-
forms the LastToFirst algorithm by 0.18%, and
DifferentOperators algorithm by 0.20%. The re-
sults show the efficiency of data flow in aiding
the reduction of the number of mutants, and the
effectiveness of the proposed technique in finding
a reduced set of higher-order mutants.

4.2. Empirical Study #2

4.2.1. Setup of Empirical Study #2

Subject Programs: The Authors selected four
programs of the subject programs showed in Ta-
ble 7 for conducting this empirical study to demon-
strate that the proposed mutant generation tech-
nique does not lead to a substantial loss in the ef-
fectiveness of the mutation testing method. These
programs are: triangle, mid, power, and remain-
der.
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Table 12. Reduction % of the number of second-order mutants generated by the three algorithms

# Subject program LastToFirst DifferentOperators The proposed algorithm

P#1 99.77% 99.75% 99.89%
P#2 99.57% 99.45% 99.86%
P#3 99.42% 99.37% 99.75%
P#4 99.73% 99.73% 99.89%
P#5 99.71% 99.71% 99.90%
P#6 99.69% 99.67% 99.86%
P#7 99.69% 99.69% 99.90%
Total 99.70% 99.68% 99.88%
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Figure 5. Reduction percentage of SOMs using the three algorithms

Procedure: the empirical study is conducted as
follows.
1. The Authors randomly selected a set of the

generated FOMs and SOMs. Table 13 shows
the number and ratio of the selected FOMs
and HOMs.

2. The Authors manually generated a set of test
cases to kill all selected FOMs. Then, the se-
lected SOMs were executed using this set of
test cases.

Table 13. The number and ratio of selected FOMs
and HOMs

#Subject program FOMs SOMs

P#1. Triangle 28 (12.8%) 12 (23.1%)
P#2. Mid 36 (30.3%) 10 (50.0%)
P#3. Power 63 (71.6%) 17 (89.5%)
P#4. Remainder 32 (17.0%) 10 (25.6%)
Total(Mean) 159 (25.9%) 49 (37.7%)

4.3. Objectives of Study #2

The Authors applied the study procedure to il-
lustrate that the proposed mutant generation

technique does not lead to a substantial loss in
the effectiveness of the mutation testing method.

4.3.1. Results and Discussion of Study #2

To illustrate that the proposed mutant gener-
ation technique does not lead to a substantial
loss in the effectiveness of the mutation testing
method, the Authors selected approximately 26%
of FOMs and 38% of SOMs as shown in Table 13.
There is a difference between the ratio of FOMs
and SOMs because most of the selected SOMs
contained one of the selected FOMs. The Au-
thors manually generated a set of test cases to
kill selected set of FOMs. Table 14 shows the
number of required test cases to kill the selected
set of FOMs.

All FOMs and SOMs were selected using the
generated test cases Then, we classified the se-
lected FOMs and SOMs into killed, not killed,
and equivalent (manually investigated) mutants.
Table 15 and Table 16 show the classification,
number, and ratio of FOMs and SOMs, respec-
tively.
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Table 14. The number of test cases

Subject program P#1. Triangle P#2. Mid P#3. Power P#4. Remainder Total

No. of test cases 3 3 2 2 10

Table 15. Classification of the selected FOMs

Subject program #Killed mutants(%) #Not killed (%) #Equivalent (%) Total

P#1. Triangle 26 (93%) 2 (7%) 0 (0%) 28 (100%)
P#2. Mid 32 (89%) 0 (0%) 4 (11%) 36 (100%)
P#3. Power 52 (83%) 11 (17%) 0 (0%) 63 (100%)
P#4. Remainder 29 (91%) 0 (0%) 3 (9%) 32 (100%)
Total(Mean) 139 (89%) 13 (6%) 7 (5%) 159 (100%)

Table 16. Classification of the selected SOMs

Subject program #Killed mutants(%) #Not killed(%) #Equivalent(%) Total

P#1. Triangle 11 (92%) 1 (8%) 0 (0%) 12 (100%)
P#2. Mid 9 (90%) 0 (0%) 1 (10%) 10 (100%)
P#3. Power 14 (82%) 2 (12%) 1 6%) 17 (100%)
P#4. Remainder 10 (100%) 0(0%) 0(0%) 10 (100%)
Total(Mean) 44 (91%) 3 (5%) 2 (4%) 49 (100%)

The mutation score MS(P, T ) was computed
for each program using Eq. 1. Table 17 shows the
mutation score for each program with respect
to FOMs and SOMs. The mutation score shows
that there is no significant loss in the efficiency of
the generated mutants. The results of empirical
study show that the proposed technique gener-
ated a smaller number of equivalent mutants.

Table 17. Mutation score of FOMS and SOMs

Subject Program FOM SOM

P#1. Triangle 92.9% 91.7%
P#2. Mid 100.0% 100.0%
P#3. Power 82.5% 87.5%
P#4. Remainder 100.0% 100.0%
Mean 93.8% 94.8%

4.4. Threats to Validity

– Construct Validity
There are three important questions about
the goal of the experiments. First, are the Au-
thors measuring the construct they intended
to measure? Although, the Authors intended
to find a reduced set of higher-order mutants,

some useless mutants (e.g., equivalent mu-
tants and redundancies) can be generated
and included in this set. Second, did the Au-
thors translate these constructs correctly into
observable measures? Although, the consid-
ered the def locations and use locations of
the same variable, the mutations for other
variables at these use locations are not con-
sidered. Third, did the used metrics have
suitable discriminatory power? Although, the
metric of the reduction is the ratio between
the number of generated higher-order mu-
tants to the number of all first-order mutants,
it does not consider the subtlety of the gen-
erated higher-order mutants.

– External Validity
The main external threat to validity; condi-
tions that limit the ability to generalize the
results of our empirical studies to a larger
population of subjects programs, is the set of
subject programs. Although the set of the sub-
ject programs contains some programs which
have been used in many previous studies,
the Authors cannot claim that these subjects
represent a random selection over the popu-
lation of programs as a whole. Although the
set of the subject programs have been used
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in many previous studies, a single researcher
selected these programs which may influence
results. Although, the Authors selected the
subject programs in a neutral attitude, there
is no guarantee that selection process was
performed in unbiased way.

– Internal Validity
There are some main internal threats to va-
lidity, which are the influences that can af-
fect the dependent variables. First, although
the mutation operators were selected in a
significant way to prevent the generation of
equivalent mutants, the equivalent mutants
were not considered through the reduction
ratio. Therefore, other empirical studies are
required to overcome this problem. Second,
although a common algorithm proposed by
F.E. Allen and J. Cocke [31] was imple-
mented to find the set of definition-uses, the
accuracy of the implementation can influence
the number of definition-uses pairs which
have a strong effect on the number of gener-
ated mutants.

5. Related Work

Mutation testing has been developed by DeMillo
et al. [3] and Hamlet [4] to create test data
for killing the seeded mutations in the tested
program [5]. The researchers classified mutants
into two categories: 1) First-order mutants which
are created by the injection of a unique fault in
the tested program [5]; 2) Higher-order mutants
which are produced by inserting two or more
faults in the tested program [1]. Jia and Har-
man [38] provided a comprehensive analysis of
trends and results of mutation testing techniques.
This section reviews mutation operators design,
generation of mutants, reduction of the number
of mutants, and data flow analysis in mutation
testing.

5.1. Mutation Operators
and Mutant Generation

At the beginning of mutation testing, most muta-
tion testing techniques targeted FORTRAN pro-

grams. Many mutation operators are presented
for most of programming languages such as FOR-
TRAN IV [39, 40], FORTRAN 77 [15, 41], Ada
[42,43], ANSI C [13], and the Java programming
language [44, 45]. Alexander et al. [46] presented
a set of mutation operators to insert into Java
utility libraries. Bradbury et al. [47] presented
a set of mutation operators to the concurrent
Java programs. Derezińska proposed a set of
C# mutation operators [48, 49]. Ferrari et al.
[50] suggested a set of mutation operators for
Aspect-Oriented programs. Anbalagan and Xie
[51, 52] presented a technique for creating mu-
tants for pointcuts and detecting equivalent mu-
tants.

5.2. Mutant Reduction

Considering all mutants makes mutation testing
a computationally expensive technique. There-
fore, reducing the number of the considered mu-
tants without a significant loss of test effective-
ness has become a key research problem. Sup-
pose M is a set of mutants and T is a set of
test data. The mutation score of the test set
T applied to mutants M is MS(M, T ). There-
fore, the mutant reduction problem is known as
finding a subset of mutants m from M, where
MS(m, T ) = MS(M, T ). Offutt and Untch [53]
classified mutant reduction techniques to three
techniques. These techniques concentrate only
on the fewer, the faster, or the smarter mutants.
Jia and Harman [38] divided these techniques
into two techniques. One technique reduces the
created mutants and the other technique reduces
the execution cost. There are four popular tech-
niques to reduce the number of considered mu-
tants: mutant sampling, mutant clustering, se-
lective mutation, and higher-order mutation. In
mutant sampling a percentage of mutants is ran-
domly selected from the set of all mutants [10–12]
and the remaining mutants are discarded [15,54].
In mutant clustering [17] a subset of mutants
is selected using clustering algorithms and the
remaining mutants are discarded [55]. The Selec-
tive Mutation [56,57] can be achieved by reducing
the number of applied mutation operators with-
out a significant loss of test effectiveness [14].
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Selective Mutation can be done by omitting two
mutation operators [14], four mutation opera-
tors [53], or six mutation operators. Wong and
Mathur selected mutation operators based on
test effectiveness [58, 59]. Offutt et al. [60] classi-
fied Mothra mutation operators to three groups:
statements, operands, and expressions and omit-
ted operators from each class in turn. Mresa and
Bottaci [61] considered mutants which have the
ability to detect equivalent mutants. Jia and Har-
man [20, 22] suggested reducing the number of
first-order mutants by replacing them with a sin-
gle HOM. Langdon et al. have used genetic pro-
gramming to generate higher-order mutants [62].

5.3. Data Flow Analysis
and Mutation Testing

A number of work explored the role of data
flow analysis in mutation testing. Girgis and
Woodward [63] and Marshall et al. [64] studied
applying data flow analysis in weak mutation
testing. Offutt and Tewary [65] and Mathur and
Wong [54] studied the coverage of mutation based
and data flow criteria by each other. Wong and
Mathur [66] compared the effectiveness of mu-
tation and data flow testing in fault detection.
A comprehensive comparison between mutation
and data flow testing techniques based on find-
ings reported in research articles can be found in
[67]. This field is in need for a lot of work to study
the role of data flow concepts in higher-order
mutation testing. From the above discussion, it
is clear that our work belongs to the mutant
reduction category. In addition, it differs from
all pervious mutant reduction work. It is the first
work treating mutant reduction by reducing the
locations of seeding mutation.

6. Conclusion and Future work

In this paper a new technique for generating a re-
duced set of higher-order mutants was introduced.
The proposed technique uses data-flow concepts
for the identification of the higher-order mutants.
The generated set of higher-order mutants con-
sists of a reduced number of mutants, which

reduces the cost of higher-order mutation testing.
In addition, the proposed technique can gener-
ate the higher-order mutants directly without
generating the first-order mutants or by combin-
ing two or more first-order mutants. The results
of the conducted experiments showed that the
proposed technique outperforms the LastToFirst
algorithm by 38.25%, and the DifferentOperators
algorithm by 41.48% reducing the total possible
number of higher-order mutants regarding FOMs.
In addition, the proposed algorithm outperforms
the LastToFirst algorithm by 0.18%, and the Dif-
ferentOperators algorithm by 0.20% in reducing
all possible number of higher-order mutants. The
obtained results showed the efficiency of data flow
in aiding the reduction of the number of mutants
and the effectiveness of the proposed technique
in finding a reduced set of higher-order mutants.
In future work, The Authors are planning to
perform these studies with real and large subject
programs. In addition, the future work will try
to answer the questions: “Do data-flow based
higher-order mutants create subtle faults?” and
“What are the effects of the proposed approach
in terms of overcoming realism and equivalent
mutant problems of mutation testing?”. Besides,
the Authors will study the subsuming property
of the generated mutants in the future work.
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