PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analogue GPR study of the Permian fanglomerates from Zygmuntówka Quarry near Chęciny, Holy Cross Mountains, southern Poland, for construction of a training image for multiple point simulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The distribution of Permian alluvial fan lithofacies in a quarry at Zygmuntówka near Chęciny, Holy Cross Mts., in southern Poland was investigated using ground penetrating radar (GPR) in order to create a training image for multiple point statistics (MPS) reconstructions of alluvial fan sedimentary facies. Five pseudo-3D GPR datasets were collected, processed and uploaded for interpretation into SKUA-GOCAD 3D geological modelling software. Three radar facies were distinguished based on the 3D geometrical pattern of radar reflections and linked to lithofacies described from the quarry by Zbroja et al. (1998). A statistical summary showed that ~50% of the lithofacies resulted from gravity flows (mostly non-cohesive), while the remaining proportion was deposited by unconfined and confined flash floods. Fluvial sedimentary facies left by waning of catastrophic floods or reworking during fair weather, alihough not prevalent, could not be distinguished from confined flood deposits based only on GPR data. The GPR datasets together with information from field observations were used to carry out MPS simulations and estimate the most probable 3D model of lithofacies at the quarry scale. This model will in turn serve as a training image for MPS reconstructions of alluvial-fan facies of Rotliegend conglomerates in the multi-scale geological model of the Gorzów Block (western Poland).
Rocznik
Strony
755--766
Opis fizyczny
Bibliogr. 35 poz., fot., mapa, rys., tab., wykr.
Twórcy
autor
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
autor
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Beres, M., Haeni, F.P., 1991. Application of ground-penetrating-radar methods in hydrogeologic studies. Ground Water, 29: 375-386.
  • 2. Blair, T.C., 2000. Sedimentology and progressive tectonic unconformities of the sheetflood-dominated Hell's Gate alluvial fan, Death Valley, California. Sedimentary Geology, 132: 233-262.
  • 3. Blair, T.C., McPherson, J.G., 1992. The Trollheim alluvial fan and facies model revisited. GSA Bulletin, 104: 762-769.
  • 4. Blair, T.C., McPherson, J.G., 1994a. Alluvial fan processes and forms. In: Geomorphology of Desert Environments (eds. A.D. Abrahams and A.J. Parsons): 14-402. Chapman and Hall, London.
  • 5. Blair, T.C., McPherson, J.G., 1994b. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, 64: 450-489.
  • 6. Comunian, A., Renard, P., Straubhaar, J., Bayer, P., 2011. Three-dimensional high resolution fluvio-glacial aquifer analog - Part 2: Geostatistical modeling. Journal of Hydrology, 405: 10-23.
  • 7. Dogan, M., Van Dam, R.L., Bohling, G.C., Butler, J.J., Hyndman, D.W., 2011. Hydrostratigraphic analysis of the MADE site: integration of full resolution GPR and hydraulic conductivity data. Geophysical Research Letters, 38: L06405.
  • 8. Gani, M.R., 2004. From turbid to lucid: A straightforward approach to sediment gravity flows and their deposits. The Sedimentary Record, 2: 4-8.
  • 9. Gawthorpe, R.L., Collier R.E.L., Alexander, J., Leeder, M., Bridge, J.S., 1993. Ground penetrating radar, application to sand body geometry and heterogeneity studies. Geological Society of London Special Publication, 73: 421-432.
  • 10. Grasmueck, M., Weger, R., Horstmeyer, H., 2005. Full-resolution 3D GPR imaging. Geophysics, 70: K12-K19.
  • 11. Guardiano, F.B., Srivastava, R.M., 1992. Multivariate geostatistics: beyond bivariate moments. Quantitative Geology and Geostatistics, 5: 133-144.
  • 12. Hakenberg, M., 1971. Szczegółowa mapa geologiczna Polski w skali 1:50 000, arkusz 850, Chęciny (in Polish). Instytut Geologiczny, Warszawa.
  • 13. Huggenberger, P., 1993. Radar facies: recognition of facies patterns and heterogeneities within Pleistocene Rhine gravels, NE Switzerland. Geological Society Special Publications, 75: 163-176.
  • 14. Karnkowski, P.H., 1994. Rotliegend lithostratigraphy in the central part of the Polish Permian Basin. Geological Quarterly, 38 (1): 27-42.
  • 15. Kiersnowski, H., Buniak, A., 2006. Evolution of the Rotliegend Basin of northwestern Poland. Geological Quarterly, 50 (1): 119-138.
  • 16. Kim, B.C., Lowe, D.R., 2004. Depositional processes of the gravelly debris flow deposits, South Dolomite alluvial fan, Owens Valley, California. Geosciences Journal, 8: 153-170.
  • 17. Kostecka, A., 1962. Characteristic of Zechstein conglomerates of Gałęzice-Bolechowice Syncline (Holy Cross Mountains) (in Polish with English summary). Kwartalnik Geologiczny, 6 (3): 416-435.
  • 18. Kuleta, M., Zbroja, S., Nawrocki, J., 2007. Permian conglomerates of Zygmuntówka quarry. In: Fieldtrip guide for International Workshop on the Triassic of Southern Poland, Fourth Meeting for Pan-European Correlation of the Epicontinental Triassic (eds. J. Szulc and A. Becker): 64-67. Państwowy Instytut Geologiczny, Warszawa.
  • 19. Linde, N., Lochbühler, T., Dogan, M., Van Dam, R.L., 2015. Tomogram-based comparison of geostatistical models: application to the macrodispersion experiment (MADE) site. Journal of Hydrology, 531: 543-556.
  • 20. Maejima, W., Nakanishi, T., 1994. Middle Miocene alluvial fan-fan delta sedimentation: the Kanaso conglomerate and sandstone member of the Togane formation to the North of Hamada, Southwest Japan. Journal of Geosciences, Osaka City University, 37: 55-75.
  • 21. Middleton, G.V., Hampton, M.A., 1973. Sediment gravity flows: mechanics of flow and deposition. In: Turbidites and Deep-water Sedimentation (eds. G.V. Middleton and A.H. Bouma): 1-38. Pacific Section SEPM, Los Angeles.
  • 22. Migaszewski, Z., Hałas, S., Durakiewicz, T., 1996. The age and origin of the calcite mineralization in the Holy Cross Mts based on lithologic-petrographic and isotopic evidence (Central Poland) (in Polish with English summary). Przegląd Geologiczny, 43: 275-281.
  • 23. Mitchum, R.M., Vail, P.R., Sangree, J.R., 1977. Seismic stratigraphy and global changes of sea level, Part 6: Stratigraphic Interpretation of Seismic Reflection Pattern. AAPG Memoir, 26: 117-133.
  • 24. Nemec, W., 2009. What is a hyperconcentrated flow? In: Abstract book, 27th Annual Meeting of the International Association of Sedimentologists (eds. V. Pascucci and S. Andreucci), Alghero, September 20-23, 2009.
  • 25. Nemec, W., Postma, G., 1993. Quaternary alluvial fans in southwestern Crete: sedimentation processes and geomorphic evolution. IAS Special Publication, 17: 235-276.
  • 26. Nemec, W., Steel, R.J., 1984. Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass flow deposits. Canadian Society of Petroleum Geologists Memoir, 10: 1-31.
  • 27. Pokorski, J., 1988. Rotliegendes stratigraphy in the north-western Poland. Bulletin of Polish Academy of Sciences, Earth Sciences, 36: 99-108.
  • 28. Ronayne, M.J., Gorelick, S.M., Caers, J. 2008. Identifying discrete geologic structures that produce anomalous hydraulic response: an inverse modeling approach. Water Resources Research, 44: W08426.
  • 29. Simons, E.V., Richardson, D.B., 1966. Resistance to flow in alluvial channels. US Geological Survey Professional Paper, 422: 1-61.
  • 30. Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R., Besson, O., 2010. An improved parallel multiple-point algorithm using a list approach. Mathematical Geosciences, 43: 305-328.
  • 31. Strebelle, S., 2000. Sequential simulation drawing structures from training images. Unpublished Ph.D. thesis, Stanford University.
  • 32. Strebelle, S., 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology 34: 1-21.
  • 33. Taylor, G., Eggleton, R.A., 2001. Regolith geology and geomorphology. John Wiley and Sons Chichester, UK.
  • 34. Thiry, M., Schmitt, J.M., Simon-Coinçon, R., 1999. Problems, progress and future research concerning palaeoweathering and palaeosurfaces. Special Publications of International Association of Sedimentologists, 27: 3-17.
  • 35. Zbroja, S., Kuleta, M., Migaszewski, Z.M., 1998. New data on conglomerates of quarry “Zygmuntówka” in the Holy Cross Mts (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 379: 43-59.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41bd876c-3c60-4794-997c-0eb08de545c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.