PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

System for measuring electric parameters of thermoelectric cell battery of a sectional module with thermogenerators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One way to manage low-temperature heat is to convert it directly into DC electricity using thermocells. By placing a single thermoelectric generator or a battery of thermoelectric cells between two heat exchangers, one side with a higher temperature medium and the other with a lower temperature medium, a temperature difference is created between the covers of the thermoelectric elements, which causes heat transfer and the generation of electricity. The module with thermogenerators and exchangers (MTEG) discussed in the article is equipped with a developed measurement system. This system is used to determine the electric current of twenty, serially-connected thermoelectric generators and to measure the electric voltage across the load resistance of the thermoelectric circuit. The publication presents subcircuits for measuring the internal resistance of two thermogenerators placed symmetrically in individual sections of the MTEG module. According to the developed test method, the measurement system was verified in cyclic tests with varying thermodynamic forcing. The accuracies of the test bench electric parameter measurement paths were estimated, yielding expanded uncertainties of ±0.012 W in the measurement of generated electric power and ±0.0008 Ω and ±0.0009 Ω in the resistance of the internal thermogenerators, respectively. Repeatability (EV) was verified and the “capability” of the developed measurement system to function correctly was confirmed.
Rocznik
Strony
1--18
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr., wzory
Twórcy
  • Łukasiewicz Research Network - Institute for Sustainable Technologies, K. Pułaskiego 6/10, 26-600 Radom, Poland
  • Kazimierz Pułaski University of Technology and Humanities, Stasieckiego 54, 26-600 Radom, Poland
Bibliografia
  • [1] Morini, M., Pinelli, M., Spina, P. R., & Venturini, M. (2013). Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications. Applied Energy, 112, 205-214. https://doi.org/10.1016/j.apenergy.2013.05.078
  • [2] Du, W.-J., Yin, Q., & Cheng, L. (2018). Experiments on novel heat recovery systems on rotary kilns. Applied Thermal Engineering, 139, 535-541. https://doi.org/10.1016/j.applthermaleng.2018.04.125
  • [3] Atmaca, A., & Yumrutas, R. (2014). Thermodynamic and exergoeconomic analysis of a cement plant: Part II - application. Energy Conversion and Management, 79, 799-808. https://doi.org/10.1016/j.enconman.2013.11.054
  • [4] Karamarković, V., Marašević, M., Karamarković, R., & Karamarković, M. (2013). Recuperator for waste heat recovery from rotary kilns. Applied Thermal Engineering, 54, 470-480. https://doi.org/10.1016/j.applthermaleng.2013.02.027
  • [5] Haddad, C., Périlhon, C., Danlos, A., François, M.-X., & Descombes, G. (2014). Some Efficient Solutions to Recover Low and Medium Waste Heat: Competitiveness of the Thermoacoustic Technology. Energy Procedia, 50, 1056-1069. https://doi.org/10.1016/j.egypro.2014.06.125
  • [6] Juárez-Huerta, V. H., Sánchez-Salas, N., & Chimal-Eguía, J. C. (2022). Optimization Criteria and Efficiency of a Thermoelectric Generator. Entropy, 24(12), 1812, 1-11. https://doi.org/10.3390/e24121812
  • [7] Sanin-Villa, D. (2022). Recent Developments in Thermoelectric Generation: A Review. Sustainability, 14(24), 16821, 1-20. https://doi.org/10.3390/su142416821
  • [8] Khedher, N. B., Selimefendigil, F., Kolsi, L., Aich, W., Said, L. B., & Boukholda, I. (2022). Performance Optimization of a Thermoelectric Device by Using a Shear Thinning Nanofluid and Rotating Cylinder in a Cavity with Ventilation Ports. Mathematics, 10(7), 1075, 1-20. https://doi.org/10.3390/math10071075
  • [9] Dughaish, Z. (2002). Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B: Condensed Matter, 322(1-2), 205-223. https://doi.org/10.1016/S0921-4526(02)01187-0
  • [10] Quan, R., Liu, G., Wang, C., Zhou, W., Huang, L., & Deng, Y. (2018). Performance Investigation of an Exhaust Thermoelectric Generator for Military SUV Application. Coatings, 8(1), 45, 1-18. https://doi.org/10.3390/coatings8010045
  • [11] Zoui, M. A., Bentouba, S., Stocholm, J. G., & Bourouis, M. (2020). Review on Thermoelectric Generators: Progress and Applications. Energies, 13, 3606, 1-32.
  • [12] Meng, J. H., Wang, X. D., & Chen, W. H. (2016). Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery. Energy Conversion and Management, 120, 71-80. https://doi.org/10.1016/j.enconman.2016.04.080
  • [13] Rowe, D. M. (1995). CRC Handbook of Thermoelectrics. CRC Press LLC, London.
  • [14] Kim, M., Park, D., & Kim, J. (2021). Thermoelectric Generator Using Polyaniline-Coated Sb2Se3/β-Cu2Se Flexible Thermoelectric Films. Polymers, 13(9), 1518, 1-11. https://doi.org/10.3390/polym13091518
  • [15] Twaha, S., Zhu, J., Yan, Y., & Li, B. (2016). A comprehensive review of thermoelectric technology: materials, applications, modeling and performance improvement. Renewable and Sustainable Energy Reviews, 65, 698-726. https://doi.org/10.1016/j.rser.2016.07.034
  • [16] Snyder, G. S., & Snyder, A. H. (2017). Figure of merit ZT of a thermoelectric device defined from materials properties. Energy & Environmental Science, 11, 1-6.
  • [17] Renge, S., Barhaiya, Y., Pant, S., & Sharma, S. (2017). A Review on Generation of Electricity using Peltier Module. IJERT, 6(1), 453-457.
  • [18] Hasaka, M., Aki, T., Morimura, T., & Kondo, S. I. (1997). Thermoelectric properties of Cu-Sn-S. Energy Conversion and Management, 38(9), 855-859. https://doi.org/10.1016/S0196-8904(96)00098-2
  • [19] Tan, M., Deng, Y., & Wang, Y. (2014). Ordered structure and high thermoelectric properties of Bi2(Te,Se)3 nanowire array. Nano Energy, 3, 144-151. https://doi.org/10.1016/j.nanoen.2013.07.009
  • [20] Pan, Y., Aydemir, U., Grovogui, J. A., Witting, I. T., & others (2018). Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency. Advanced Materials, 30(34), 1-24. https://doi.org/10.1002/adma.201802016
  • [21] Mamur, H., Bhuiyan, M. R. A., Korkmaz, F., & Nil, M. (2018). A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renewable and Sustainable Energy Reviews, 82(3), 4159-4169. https://doi.org/10.1016/j.rser.2017.10.112
  • [22] Wu, H., Zhao, L.-D., Zheng, F., Wu, D., & others (2014). Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nature Communications, 5, 1-9. https://doi.org/10.1038/ncomms5515
  • [23] Li, K., Garrison, G., Zhu, Y., Horne, R., & Petty, S. (2021). Cost Estimation of Thermoelectric Generators. PROCEEDINGS, 46th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 15-17 February, SGP-TR-218, 1-8.
  • [24] Babu, C., & Ponnambalam, P. (2017). The role of thermoelectric generators in the hybrid PV/T systems: A review. Energy Conversion and Management, 151, 368-385. http://dx.doi.org/10.1016/j.enconman.2017.08.060
  • [25] Wojciechowski, K., Merkisz, J., Fuć, P., & Tomankiewicz, J., & others (2013). Prototypical thermoelectric generator for waste heat conversion from combustion engines. Combustion Engines, 154, 3, 60-71.
  • [26] Jadwiszczak, P., & Sidorczyk, M. (2016). Produkcja energii elektrycznej z ciepła za pomocą ogniw TEG; charakterystyki termoelektryczne termogeneratorów. Rynek instalacyjny, 4, 38-42. (in Polish)
  • [27] Karthick, K., Suresh, S., Muaaz, M., Hussain, M. D., Ali, H. M., & Kumar, C. S. S. (2019). Evaluation of solar thermal system configurations for thermoelectric generator applications: A critical review. Solar Energy, 188, 111-142. https://doi.org/10.1016/j.solener.2019.05.075
  • [28] Królicka, A., Hruban, A., & Mirowska, A. (2012). Nowoczesne materiały termoelektryczne - przegląd literaturowy. Materiały Elektroniczne, 40(4), 19-34. (in Polish)
  • [29] Parashchuk, T., Horichok, I., Kosonowski, A., Cherniushok, O., & others (2021). Insight into the transport properties and enhanced thermoelectric performance of n-type Pb1-x Sbx Te. Journal of Alloys and Compounds, 860, 158355. https://doi.org/10.1016/j.jallcom.2020.158355
  • [30] BioLite, CampStove 2+ Electricity Generating Wood Camp Stove. https://eu.bioliteenergy.com/products/campstove-2-plus. (accessed on 18 May 2024)
  • [31] Gould, C. A. (2020). Thermoelectric water meter energy harvesting. Journal of Physics: Conference Series, IOP Publishing: Bristol, UK, 012010, 1-11. https://doi.org/10.1088/1742-6596/1534/1/012010
  • [32] Hájovský, R., Pieš, M., & Richtár, L. (2016). Analysis of the Appropriateness of the Use of Peltier Cells as Energy Sources. Sensors, 16(6), 760, 1-13. https://doi.org/10.3390/s16060760
  • [33] Barma, M. C., Riaz, M., Saidur, R., & Long, B. D. (2015). Estimation of thermoelectric power generation by recovering waste heat from Biomass fired thermal oil heater. Energy Conversion and Management, 98, 303-313. https://doi.org/10.1016/j.enconman.2015.03.103
  • [34] Sztekler, K., Wojciechowski, K., & Komorowski, M. (2016). The thermoelectric generators use for waste heat utilization from conventional power plant. E3S Web of Conferences, Energy and Fuels, 14, 01032, 1-8. https://doi.org/10.1051/e3sconf/20171401032
  • [35] McCarty, R., & Piper, R. (2015). Voltage-current curves to characterize thermoelectric generators. Journal of Electronic Materials, 44, 6, 1896-1901. https://doi.org/10.1007/s11664-014-3585
  • [36] Mrozek, M., Majcher, A., & Neska, M. (2020). Przekształtnik energoelektroniczny do współpracy z generatorami termoelektrycznymi. Zeszyty Energetyczne. Wydawnictwo Politechniki Wrocławskiej, VII, 303-314. (in Polish)
  • [37] Kwan, T. H., & Wu, X. (2017). TEG Maximum Power Point Tracking using an Adaptive Duty Cycle Scaling Algorithm. Energy Procedia, 105, 14-27. https://doi.org/10.1016/j.egypro.2017.03.274
  • [38] Laird, I., & Lu, D. D. C. (2013). High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator. IEEE Transactions on Power Electronics, 28(7), 3147-3157. https://doi.org/10.1109/TPEL.2012.2219393
  • [39] Champier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, 167-181. https://doi.org/10.1016/j.enconman.2017.02.070
  • [40] Kumar, P. M., Babu, V. J., Subramanian, A., Bandla, A., & others (2019). The Design of a Thermoelectric Generator and Its Medical Applications. Designs, 3(22), 1-26. https://doi.org/10.3390/designs3020022
  • [41] Wen, D.-L., Deng, H.-T., Liu, X., Li, G.-K., Zhang, X.-R., & Zhang, X.-S. (2020). Wearable multi-sensing double-chain thermoelectric generator. Microsystems & Nanoengineering, 6(1). https://doi.org/10.1038/s41378-020-0179-6
  • [42] Hebei, I. T. Co., Ltd. Thermoelectric Cooler TEC1-12730 [Datasheet, rev. 2.03]. http://www.hebeiltd.com.cn/peltier.datasheet/TEC1-12730.pdf
  • [43] LEM International. Voltage Transducer LV 25-P. № 97.27.19.000.0, 8 July 2021/version 20. http://www.lem.com.
  • [44] LEM International. Current Transducer LA 25-NP. № 97.08.19.000.0, 11 August 2022/version 17. http://www.lem.com.
  • [45] Schneider Electric. Modicon TM5, Analog I/O Modules, Hardware Guide. [03/2018, EIO0000000450.06].
  • [46] Neska, M., Mrozek, M., Żurek-Mortka, M., & Majcher, A. (2021). Analysis of the parameters of the two-sections hot side heat exchanger of the module with thermoelectric generators. Energies, 14(16), 5169, 1-15. https://doi.org/10.3390/en14165169
  • [47] Neska, M., & Majcher, A. (2014). Estimation of the uncertainty of measurement in a two-channel system for tests on the intensity of infrared radiation. Problemy Eksploatacji - Maintenance Problems, 3, 45-55.
  • [48] EA Laboratory Committee (2022). Evaluation of the uncertainty of measurement in calibration. European co-operation for Accreditation [April 2022 rev03]. https://www.pca.gov.pl
  • [49] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Guide to the expression of uncertainty in measurement (JCGM 100:2008). http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
  • [50] Rucki, M., Barisic, B., & Szalay, T. (2008). Analysis of air gage inaccuracy caused by flow instability. Measurement, 41(6), 655-661. https://doi.org/10.1016/j.measurement.2007.10.001
  • [51] Jermak, C. J., & Rucki, M. (2016). Static Characteristics of Air Gauges Applied in the Roundness Assessment. Metrology and Measurement Systems, 23(1), 85-96. https://doi.org/10.1515/mms-2016-0009
  • [52] Sałaciński, T. (2012). Analysis of tools and measurement systems capabilities. Inżynieria Maszyn, 2(17), 74-83.
  • [53] Neska, M. C., & Opara, T. A. (2022). Uncertainty of pressure measurement in a single-bed adsorber. Metrology and Measurement Systems, 29(1), 93-108. https://doi.org/10.24425/mms.2022.138544
  • [54] Dietrich, E., & Schulze, A. (2010). Statistical Procedures for Machine and Process Qualification. Hanser Fachbuchverlag, 6, 1-748.
  • [55] Benhadouga, S., Meddad, M., Eddiai, A., Boukhetala, D., & Khenfer, R. (2019). Sliding mode control for MPPT of a thermogenerator. Journal of Electronic Materials, 48(4), 2103-2111. https://doi.org/10.1007/s11664-019-06997-y
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41bc51c6-1dd9-446d-95c0-0c543225fefd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.