PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of dentistry cements using FTIR Spectroscopy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to evaluate the influence of artificial saliva on dental materials. Dental cements of various compositions and applications were analyzed. Five types of cements were selected for the study: ionomer glass, carboxylic glass and cements used for temporary fillings: zinc-sulphate cement and cement containing calcium hydroxide. Dental materials were prepared in accordance with the manufacturer's instructions. In the first stage, the cements were examined using the transmission technique in the range of 400-4000 cm-1. Dental cements were incubated in saliva at pH 5 for 21 days. After this time, the FTIR spectra for the cements were measured again and placed in artificial saliva. It was found that the FTIR spectra of dentistry cements after contact with artificial saliva differ from those corresponding to the starting materials. Spectroscopic analysis was also performed on saliva before and after incubating dental cements and materials used as temporary fillings. FTIR results indicate that under these conditions changes occur on the surface of dental materials due to their incubation in artificial saliva. The composition of saliva changes after the incubation of dental materials in it. Urea present in artificial saliva is degraded. Carbonates and phosphates are formed on the surface of dental materials. The disappearance of some bands in the spectra of the cements and their appearance in the spectra of the artificial saliva indicates the transfer of some components from the cements to the artificial saliva. The environment of the artificial saliva affects the dental materials. Analogous changes in the spectra of all tested dental materials are observed. These changes are limited to their area.
Rocznik
Strony
33--39
Opis fizyczny
Bibliogr. 31 poz., wykr.
Twórcy
autor
  • University of Applied Sciences in Tarnow, Faculty of Mathematics and Natural Sciences, ul. Mickiewicza 8, 33-100 Tarnów, Poland
Bibliografia
  • 1. Haugen HJ, Qasim SB, Matinlinna, JP, Vallittu P, Nogueira LP. Nano-CT as tool characterization of dental resin composites. Scientific Reports. 2020;10(15520). doi: https://doi.org/10.1038/s41598-020-72599-y.
  • 2. Combe EC. Notes of Dental Materials. London: Pearson Professional Limited; 1992.
  • 3. Petropoulou A, Dimitriadi M, Zinelis S, Sarafianou A, Eliades G. Surface characteristics and color stability of gin giva-colored resin composites. Materials. 2020;13(11);2540. doi: https://doi.org/10.3390/ma13112540.
  • 4. Anastasiadis K, Koulaouidou EA, Palaghias G, Eliades G. Bonding of composite to base materials: effects of adhesive treatments on base surface properties and bond strength. The Journal of Adhesive Dentistry. 2018;20(2):151–164. doi: https://doi.org/10.3290/j.jad.a40302.
  • 5. Paul J. Dental cements – a review to proper selection. International Journal of Current Microbiology and Applied Sciences. 2015;4(2):659–669.
  • 6. Młyniec M, Gmerek A, Lipski M. Jakich materiałów używa się obecnie do osadzania czasowych uzupełnień protetycznych. Magazyn Stomatologiczny. 2017;7–8:88–89.
  • 7. Darvell BW. Materials Science for Dentistry. 10th ed. Oxford: Woodhead Publishing; 2018:249–291.
  • 8. Matinlinna JP, Lassila LVJ, Vallittu PK. Evaluation of five dental silanes on bonding a luting cement onto silica-coated titanium. Journal of Dentistry. 2006;34(9):721–726. doi: https://doi.org/10.1016/j.jdent.2006.01.005.
  • 9. Matinlinna JP, Lassila LVJ, Vallittu PK. The effect of a no vel silane blend system on resin bond strength to silica-co ated Ti substrate. Journal of Dentistry. 2006;34(7):436–443. doi: https://doi.org/10.1016/j.jdent.2005.09.007.
  • 10. Matinlinna JP, Lassila LVJ, Kangasniemi I, Yli-Urpo A, Vallittu PK. Shear bond strength of Bis-GMA resin and methacrylated dendrimer resins on silianized titanium sub strate. Dental Materials. 2005;21(3):287–296. doi: https://doi.org/10.1016/j.dental.2004.03.011.
  • 11. Eliades G, Vougiouklakis G, Palaghias G. Effect of dentin primers on the morphology, molecular composition and collagen conformation of acid-demineralized dentin in situ. Dental Materials. 1999;15(5):310–317. doi: https://doi.org/10.1016/S0109-5641(99)00050-0.
  • 12. Griggs JA, Wataha JC, Kishen A. Effect of hydrolyzed sur face layer on the cytoxicity and chemical resistance of a low fusing porcelain. Dental Materials. 2003;19(7):353–358. doi: https://doi.org/10.1016/S0109-5641(02)00066-0.
  • 13. Larraz E, Deb S, Elvira C, Román JS. A novel amphiphilic acrylic copolymer based on Triton X-100 for a poly(al kenoate) glass-ionomer cement. Dental Materials. 2006; 22(6):506–514. doi: https://doi.org/10.1016/j.dental.2005.06.003.
  • 14. Mazinis E, Eliades G, Lambrianides T. An FTIR study of the setting reaction of various endodontic sealers. Journal of Endodontics. 2007;33(5):616–620. doi: https://doi.org/10.1016/j.joen.2005.06.001.
  • 15. Atai M, Watts DC. A new kinetic model for the photopoly merization shrinkage-strain of dental composites and resin- -monomers. Dental Materials. 2006;22(8):785–791. doi: https://doi.org/10.1016/j.dental.2006.02.009.
  • 16. Ikemura K, Tay FR, Hironaka T, Endo T, Pashley DH. Bonding mechanism and ultrastructural interfacial analy sis of a single-step adhesive to dentin. Dental Materials. 2003;19(8):707–715. doi: https://doi.org/10.1016/S0109- 5641(03)00017-4.
  • 17. Miyazaki M, Onose H, Iida N, Kazama H. Determination of residual double bonds in resin – dentin interface by Raman spectroscopy. Dental Materials. 2003;19(3):245–251. doi: https://doi.org/10.1016/S0109-5641(02)00039-8.
  • 18. Atai M, Nekoomanesh M, Hashemi SA, Amani S. Physical and mechanical properties of an experimental dental composite based on a new monomer. Dental Materials. 2004;20(7):663–668. doi: https://doi.org/10.1016/j.dental. 2003.08.008.
  • 19. Peez R, Frank S. The physical–mechanical performance of the new Ketac™ Molar Easymix compared to commercially available glass ionomer restoratives. Journal of Dentistry. 2006;34(8):582–587. doi: https://doi.org/10.1016/j.jdent. 2004.12.009.
  • 20. Palin WM, Fleming GJP, Burke FJT, Marquis PM, Randall RC. Monomer conversion versus flexure strength of a novel dental composite. Journal of Dentistry. 2003;31(5):341–351, doi: https://doi.org/10.1016/s0300-5712(03)00050-2.
  • 21. Oréfice RL, Discacciati JAC, Neves AD, Mansur HS, Jansen WC. Controlling the phase stability of polymer blends through the introduction of impenetrable interfaces. Polymer Testing. 2003;22(1):77–81.
  • 22. Arcis RW, López-Macipe A, Toledano M, Osorio E, Rodríguez-Clemente R, Murtra J, Fanovich MA, Pascual CD. Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dental Materials. 2002;18(1):49–57. doi: https://doi.org/10.1016/ S0109-5641(01)00019-7.
  • 23. Sakaguchi R, Ferracane J, Powers J. Fundamentals of materials science. In: Sakaguchi R, Ferracane J, Powers J, editors. Craig’s Restorative Dental Materials. 14th ed. St. Louis, Missouri: Elsevier; 2019:29–68.
  • 24. Yip HK, To WM. An FTIR study of the effects of artificial saliva on the physical characteristics of the glass ionomer cements used for art. Dental Materials. 2005;21(8): 695–703. doi: https://doi.org/10.1016/j.dental.2004.09.009.
  • 25. Yip HK, Guo JH, Wong WHS. Incipient caries lesions on cementum by mono- and co-culture oral bacteria. Journal of Dentistry. 2007;35(5):377–382. doi: https://doi.org/10.1016/ j.jdent.2006.11.002.
  • 26. Ameer MA, Khamis E, Al-Motlaq M. Electrochemical be havior of non-precious dental alloys in bleaching agents. Electrochimica Acta. 2004;50(1):141–148. doi: https://doi. org/10.1016/j.electacta.2004.07.025.
  • 27. Lee S, Greener EH, Menis DL. Detection of leached moieties from dental composites in fluid simulating food and saliva. Dental Materials. 1995;11(5–6):348–353. doi: https://doi.org/10.1016/0109-5641(95)80033-6.
  • 28. Li H, Zhou ZR. Wear behaviour of human teeth in dry and artificial saliva conditions. Wear. 2002;249(10–11):980–984. doi: https://doi.org/10.1016/S0043-1648(01)00835-3.
  • 29. Gadsden JA. Infrared Spectra of Minerals and Related Inorganic Compounds. London: Butterworths; 1975.
  • 30. Nyquist RA, Kagel RO. Infrared Spectra of Inorganic Compounds (3800–45 cm−1). New York: Academic Press; 1971.
  • 31. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric Identification of Organic Compounds. New York: John Wiley & Sons, New York; 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41b59235-3c19-4be9-8747-8d404b5d4c2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.