Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This short report presents the investigation results on the zircon from meta-andesitic rock from the Ankarede Volcanite Formation of the Lower Köli Nappe Complex in Scandinavian Caledonides. Previous U-Pb dating revealed a wide span of dates ranging from ca. 520 to ca. 480 Ma, with a mean age of 491 ± 3 Ma for the zircon cores. Using cathodoluminescence and back-scattered electron imaging, along with chemical mapping, we identified distinct zones within the zircon grains; 1) cores of clear magmatic provenance, 2) mantles also of magmatic origin but with a slightly different chemical composition and 3) zircon rims that suffered metamictisation and fluid-induced alterations. These findings highlight a complex growth history and alteration of studied zircon that affect the interpretation of zircon dating results. This research underscores the importance of detailed zircon studies for understanding the intricate processes involved in the magmatic and metamorphic evolution of Virisen terrain in Scandinavian Caledonides.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
34--43
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, 30 Mickiewicza Av., 30-059 Kraków, Poland
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden
- Geological Survey of Norway, Leiv Eirikssons vei 39, 7040 Trondheim, Norway
autor
- Institute of Geological Sciences, University of Wrocław, Pl. M. Borna 9, 50-204 Wrocław, Poland
Bibliografia
- Barnes, S.J., Liu, W., 2012. Pt and Pd mobility in hydrothermal fluids: Evidence from komatiites and from thermodynamic modelling. Ore Geology Reviews, 44, 49-58. https://doi.org/10.1016/j. oregeorev.2011.08.004
- Barnes, C.J., Majka, J., Schneider, D., Walczak, K., Bukała. M., Kośmińska, K., Tokarski, T., Karlsson A., 2019. High-spatial resolution dating of monazite and zircon reveals the timing of subduction–exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides). Contributions to Mineralogy and Petrology, 174, 0. https://doi.org/10.1007/s00410- 018-1539-1
- Brugger, J., Liu, W., Etschmann, B., Mei, Y., Sherman, D.M., Testemale, D., 2016. A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? Chemical Geology, 447, 219-253. https://doi.org/10.1016/j. chemgeo.2016.10.021
- Carter, I.S.M., Cuthbert, S.J., Walczak, K., Ziemniak, G., Kooijman, E., Majka, J., 2023. Cambrian ages for metavolcanites in the Lower Kӧli Nappes, Swedish Caledonides: Implications for the status of the Virisen arc terrane. Journal of the Geological Society, 180 (6): jgs2022–130. https://doi.org/10.1144/ jgs2022-130
- Claesson, S., Klingspor, I., Stephens, M.B. 1983. U-Pb and Rb-Sr isotopic data on an Ordovician volcanicsubvolcanic complex from the Tjopasi group, Köli Nappes, Swedish Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 105, 9–15. https://doi. org/10.1080/11035898309455285
- Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of Zircon Textures, in: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Mineralogical Society of America and Geochemical Society, Washington, DC, United States, pp. 469-500. https://doi.org/10.2113/0530469
- Delattre, S., Utsunomiya, S., Ewing, R.C., Boeglin, J-L., Braun, J-J., Balan, E., Calas, G., 2007. Dissolution of radiation-damaged zircon in lateritic soils. American Mineralogist, 92 (11), 1978-1989. https://doi. org/10.2138/am.2007.2514
- Edmonds, M., Aiuppa, A., Humphreys, M., Moretti, R., Giudice, G., Martin, R.S., Herd, R.A., Christopher, T., 2010. Excess volatiles supplied by mingling of mafic magma at an andesite arc volcano. Geochemistry, Geophysics, Geosystems, 11, Q04005. https://doi. org/10.1029/2009GC002781
- Ewing, R.C., Meldrum, A., Wang, L.M., Weber, W.J., Corrales, L.R., 2003. Radiation effects in zircon. In: Hanchar, H. M. & Hoskin, P. W. O. (eds) Zircon. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, 53, 387-420. https://doi.org/10.2113/0530387
- Ersay, L., Greenough, J.D., Larson, K.P., Dostal, J., 2022. Zircon reveals multistage, magmatic and hydrothermal Rare Earth Element mineralization at Debert Lake, Nova Scotia, Canada, Ore Geology Reviews, 144, 104780. https://doi.org/10.1016/j.oregeorev.2022.104780
- Ge, R., Wilde, S.A., Nemchin, A.A., Whitehouse, M.J., Bellucci, J.J., Erickson, T.M., 2019. Mechanisms and consequences of intra-crystalline enrichment of ancient radiogenic Pb in detrital Hadean zircons from the Jack Hills, Western Australia. Earth and Planetary Science Letters 517, 38–49. https://doi.org/10.1016/j. epsl.2019.04.005
- Gee, D.G., Kumpulainen, R., Roberts, D., Stephens, M.B., Zachrisson, E., Thon, A., 1985. Scandinavian Caledonides - Tectonostratigraphic Map, Scale 1:2 000 000, Sveriges Geologiska Undersökning, Ba 35. Geisler, T., Schaltegger, U., Tomaschek, F., 2007. Reequilibration of Zircon in Aqueous Fluids and Melts. Elements, 3 (1), 43–50. https://doi.org/10.2113/ gselements.3.1.43
- Greiling, R.O., Grimmer, J.C., 2007. Köli nappes in the north-central Swedish Caledonides – new views on stratigraphy and structural evolution. GFF, 129, 141– 153. https://doi.org/10.1080/11035890701292141
- Grimmer, J.C., Greiling, R.O., 2012. Serpentinites and low-K island arc meta-volcanic rocks in the Lower Köli Nappe of the central Scandinavian Caledonides: Late Cambrian-early Ordovician serpentinite mud volcanoes in a forearc basin? Tectonophysics, 541–543, 19–30. https://doi.org/10.1016/j.tecto.2012.03.014
- Hay, D. C., Dempster, T. J., 2009. Zircon Behaviour during Lowtemperature Metamorphism, Journal of Petrology, 50 (4), 571–589. https://doi.org/10.1093/petrology/ egp011
- Hay, D.C., Dempster, T.J., Lee, M.R., Brown, D.J., 2010. Anatomy of a low temperature zircon outgrowth. Contributions to Mineralogy and Petrology, 159, 81–92. https://doi.org/10.1007/s00410-009-0417-2
- Huijsmans, J.R.; Hamers, M.; Drury, M.R.; Lee, J.K.W., 2022. Recrystallisation and Trace-Element Mobility in Zircons: Implications for U-Pb Dating. Minerals, 12, 1489. https://doi.org/10.3390/min12121489
- King, A.J., Phillips, K.J.H., Strekopytov, S., Vita-Finzi, C., Russell, S.S., 2020. Terrestrial modification of the Ivuna meteorite and a reassessment of the chemical composition of the CI type specimen. Geochimica et Cosmochimica Acta, 268, 73–89. https://doi. org/10.1016/j.gca.2019.09.041.
- Klonowska, I., Janák, M., Majka, J., Petrík, I., Froitzheim, N., Gee, D.G. Sasinková, V., 2017. Microdiamond on Åreskutan confirms regional UHP metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. Journal of Metamorphic Geology, 35, 541–564. https://doi.org/10.1111/jmg.12244
- Kulling, O., 1933. Bergbyggnaden inom Björkvattnet— Virisen-området i Västerbottensfjällens centrala del. Geologiska Föreningen i Stockholm Förhandlingar, 55, 167–422. Kusiak, M.A., Whitehouse, M.J., Wilde, S.A., Nemchin, A.A., Clark, C., 2013. Mobilization of radiogenic Pb in zircon revealed by ion imaging: implications for early Earth geochronology. Geology 41, 291–294. https://doi. org/10.1130/G33920.1
- Kusiak, M.A., Dunkley, D.J., Wirth, R., Whitehouse, M.J., Wilde, S.A., Marquardt, K., 2015. Metallic lead nanospheres discovered in ancient zircons. Proceedings of the National Academy of Sciences (PNAS) 112, 4958–4963. https://doi.org/10.1073/pnas.1415264112
- Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E., Schwartz, S., 2014. XMapTools: a MATLAB©- based program for electron microprobe X-ray image processing and geothermobarometry. Computers and Geosciences, 62, 227-240. https://doi.org/10.1016/j. cageo.2013.08.010
- Lanari, P., Vho, A., Bovay, T., Airaghi, L., Centrella, S., 2019. Quantitative compositional mapping of mineral phases by electron probe micro-analyser. Geological Society of London, Special Publications, 478, 39-63. https:// doi.org/10.1144/sp478.4
- Lanari, P., Laughton, J., Tedeschi, M., & Markmann, T.A., 2023. XMapTools 4.1 (v4.1). Zenodo. https://doi. org/10.5281/zenodo.7656958
- Lyon, I.C., Kusiak, M.A., Wirth, R., Whitehouse, M.J., Dunkley, D.J., Wilde, S.A., Schaumlöffel, D., Malherbe, J., Moore, K.L., 2019. Pb nanospheres in ancient zircon yield model ages for zircon formation and Pb mobilization. Scientific Reports, 9, 13702. https://doi.org/10.1038/ s41598-019-49882-8
- Morgavi, D., Arienzo, I., Montagna, C., Perugini, D., Dingwell, D.B., 2017. Magma Mixing: History and Dynamics of an Eruption Trigger. In: Gottsmann, J., Neuberg, J., Scheu, B. (eds) Volcanic Unrest. Advances in Volcanology (2019). Springer, Cham. https://doi. org/10.1007/11157_2017_30
- Nasdala, L., Zhang, M., Kempe, U., Panczer, G., Gaft, M., Plöotze, M., 2003. Spectroscopic methods applied to zircon, in: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Mineralogical Society of America and Geochemical Society, Washington, DC, United States, pp. 427-467.
- Root, D. B., Corfu, F. 2012. U–Pb geochronology of two discrete Ordovician high-pressure metamorphic events in the Seve Nappe Complex, Scandinavian Caledonides. Contributions to Mineralogy and Petrology, 163, 769–788.
- Rubatto, D., 2017. Zircon: The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83 (1), 261–295. https://doi.org/10.2138/rmg.2017.83.9
- Schaltegger, U., Davies, J.H.F.L., 2017. Petrochronology of Zircon and Baddeleyite in Igneous Rocks: Reconstructing Magmatic Processes at High Temporal Resolution. Reviews in Mineralogy and Geochemistry, 83 (1): 297–328. https://doi.org/10.2138/rmg.2017.83.10
- Sjöstrand, T., 1978. Caledonian Geology of the Kvarnbergsvattnet Area, Northern Jämtland, Central Sweden: Stratigraphy, Metamorphism, Deformation. Sveriges geologiska undersökning, Series C, 735. Stephens, M.B., 1980. Occurrence, nature and tectonic significance of volcanic and high-level intrusive rocks within the Swedish Caledonides. In: Wones, D. R. (ed.) The Caledonides in the U.S.A. 289–298.
- Stephens, M.B., 1982. Field relationships, petrochemistry and petrogenesis of the Stekenjokk volcanites, central Swedish Caledonides. Sveriges geologiska undersökning, Series C, 786. 111 pp.
- Stephens, M.B., Furnes, H., Robins, B., Sturt, B.A., 1985. Igneous activity within the Scandinavian Caledonides. In: Gee, D. G. and Sturt, B. A. (eds) The Caledonide Orogen – Scandinavia and Related Areas. 623–656.
- Stephens, M.B., Gee, D.G., 1985. A tectonic model for the evolution of the terranes in the central Scandinavian Caledonides. In: Gee, D. G. and Sturt, B. A. (eds) The Caledonide Orogen – Scandinavia and Related Areas. Stephens, M.B., Gee, D.G., 1989. Terranes and polyphase accretionary history in the Scandinavian Caledonides. Geological Society of America Special Paper, 230, 17–30.
- Stephens, M.B., 2001. Berggrundskartan 24E Joesjö SO-24F Tärna SV, scala 1:50 000. Ai 161.
- Stephens, M.B., 2020. Chapter 22 Upper and uppermost thrust sheets in the Caledonide orogen, Sweden: outboard oceanic and exotic continental terranes. Geological Society, London, Memoirs, 50, 549–575. https://doi.org/10.1144/m50-2019-12.
- Walczak, K., Barnes, C.J., Majka, J., Gee, D.G., Klonowska, I., 2022. Zircon age depth-profiling sheds light on the early Caledonian evolution of the Seve Nappe Complex in west-central Jämtland. Geoscience Frontiers, 13, https://doi.org/10.1016/j.gsf.2020.11.009
- Waldron, J.W.F., Schofield, D.I., Murphy, J.B., Thomas, C.W., 2014. How was the Iapetus Ocean infected with subduction? Geology, 42, 1095-1098. https://doi. org/10.1130/G36194.1
- Williams, I.S., Compston, W., Black, L.P., Ireland, T.R., Foster, J.J., 1984. Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. Contrib. Mineral. Petrol.88, 322–327. https:// doi.org/10.1007/BF00376756
- Wotzlaw, J.F., Bindeman, I.N., Watts, K.E., Schmitt, A.K., Caricchi, L., Schaltegger, U., 2014. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved yellowstone-type supervolcanoes. Geology, 42 (9): 807-810. https://doi.org/10.1130/G35979.1
- Wotzlaw, J.F., Bindeman, I.N., Stern, R.A., D’Abzac, F.X., Schaltegger, U., 2015. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Scientific Reports, 5, 14026. https:// doi.org/10.1038/srep14026
- Zhang, B., Hu, X., Li, P. Tang, Q., Zhou, W., 2019. Trace element partitioning between amphibole and hydrous silicate glasses at 0.6–2.6 GPa. Acta Geochimica, 38, 414–429. https://doi.org/10.1007/s11631-019-00322-4
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41b4e715-e3cb-46d6-8e0a-7418ecd2f833
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.