PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability of GPS and GLONASS onboard clocks on a monthly basis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the stability of the GPS and GLONASS system clocks’ stability. It describes the construction of these two systems and calculated four different Allan variances (AVAR), based on the MGEX (the Multi-GNSS Experiment) clock products. Four used variances allowed making a better analysis of each GNSS system clock. The results are shown at different averaging times from 5 s as successive multiples to 655,360 s in a monthly period. The stability of GPS and GLONASS clocks is included in the range of 10-12~10-14 s. The results showed that GLONASS clocks are stable (10-12~10-14 s) and are affected with white frequency noise (WFM). The GPS clock stability models have more fluctuations for τ > 40,960 s and the mean stability is concluded between 10-12~10-13 s. Mean frequency accuracy for GPS clocks is related with WFM and Random Walk Frequency (RWF). The differences in clock stability are caused by several factors – block type, type of clock and the time of a satellite in orbit. These factors have an influence on stability results.
Słowa kluczowe
Rocznik
Tom
Strony
193--209
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • AGH University of Science and Technology, Mickiewicza 30 Av., 30059 Krakow, Poland
Bibliografia
  • 1. Borowski Łukasz. 2013. “Duration of Static GPS Measurements and It’s Influence on the Coordinates Accuracy”. Budownictwo i Architektura 12(4): 251-56. DOI: https://doi.org/10.35784/bud-arch.1979.
  • 2. Brouwer Dirk. 1951. “The Accurate Measurement of Time”. Physics Today 4(8): 6-15. DOI: https://doi.org/10.1063/1.3067337.
  • 3. Daly P., I.D. Kitching, D.W. Allan, T.K. Peppler. 1991. “Frequency and Time Stability of GPS and GLONASS Clocks”. In: 44th Annual Symposium on Frequency Control 9: 127-139. IEEE. DOI: https://doi.org/10.1109/FREQ.1990.177490.
  • 4. Delporte Jerome, Cyrille Boulanger, Flavien Mercier. 2012. “Short-Term Stability of GNSS on-Board Clocks Using the Polynomial Method”. In: 2012 European Frequency and Time Forum: 117-121. IEEE. DOI: https://doi.org/10.1109/EFTF.2012.6502347.
  • 5. Galleani Lorenzo, Patrizia Tavella. 2009. “Fast Computation of the Dynamic Allan Variance”. 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum 56(3): 685-687. DOI: https://doi.org/10.1109/FREQ.2009.5168270.
  • 6. Galleani L., P. Tavella. 2015. “The Dynamic Allan Variance IV: Characterization of Atomic Clock Anomalies”. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 62(5): 791-801. DOI: https://doi.org/10.1109/TUFFC.2014.006733.
  • 7. Gambis Daniel. 2002. “Allan Variance in Earth Rotation Time Series Analysis”. Advances in Space Research 30(2): 207-212. DOI: https://doi.org/10.1016/S0273-1177(02)00286-7.
  • 8. Griggs Erin, E. Robert Kursinski, Dennis Akos. 2014. “An Investigation of GNSS Atomic Clock Behavior at Short Time Intervals”. GPS Solutions 18(3): 443-452. DOI: https://doi.org/10.1007/s10291-013-0343-7.
  • 9. Griggs Erin, E. Robert Kursinski, Dennis Akos. 2015. “Short-Term GNSS Satellite Clock Stability”. Radio Science 50(8): 813-826. DOI: https://doi.org/10.1002/2015RS005667.
  • 10. Hauschild André, Oliver Montenbruck, Peter Steigenberger. 2013. “Short-Term Analysis of GNSS Clocks”. GPS Solutions 17(3): 295-307. DOI: https://doi.org/10.1007/s10291-012-0278-4.
  • 11. Howe D., D. Allan, J. Barnes. 1999. “Properties of oscillator signals and measurement methods”. Technical report. Time and Frequency Division. National Institute of Standards and Technnology. Available at: https://tf.nist.gov/phase/Properties/main.htm.
  • 12. Howe D.A., T.K. Peppler. 2001. “Definitions of ‘Total’ Estimators of Common Time-Domain Variances”. In: Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No. 01CH37218), 127-132. IEEE. DOI: https://doi.org/10.1109/FREQ.2001.956175.
  • 13. Huang Guanwen, Bobin Cui, Yan Xu, Qin Zhang. 2019. “Characteristics and Performance Evaluation of Galileo On-Orbit Satellites Atomic Clocks during 2014-2017”. Advances in Space Research 63(9): 2899-2911. DOI: https://doi.org/10.1016/j.asr.2018.01.034.
  • 14. Jakowski Norbert. 2017. Ionosphere Monitoring. Springer Handbooks. DOI: https://doi.org/10.1007/978-3-319-42928-1_39.
  • 15. Kawiecka R., A. Krawczyk, P. Lewińska, K. Pargieła, Stanisław Szombara, A. Tama, K. Adamek, M. Lupa. 2018. “Mining Activity and Its Remains - The Possibilities of Obtaining, Analysing and Disseminating of Various Data on the Example of Miedzianka, Lower Silesia, Poland”. Journal of Applied Engineering Sciences 8(2): 65-72. DOI: https://doi.org/10.2478/jaes-2018-0020.
  • 16. Li Haojun, Xilin Liao, Bofeng Li, Ling Yang. 2018. “Modeling of the GPS Satellite Clock Error and Its Performance Evaluation in Precise Point Positioning”. Advances in Space Research 62(4): 845-854. DOI: https://doi.org/10.1016/j.asr.2018.05.025.
  • 17. Li Xingxing, Xinghan Chen, Maorong Ge, Harald Schuh. 2019. “Improving Multi-GNSS Ultra-Rapid Orbit Determination for Real-Time Precise Point Positioning”. Journal of Geodesy 93(1): 45-64. DOI: https://doi.org/10.1007/s00190-018-1138-y.
  • 18. Li Xingxing, Xin Li, Yongqiang Yuan, Keke Zhang, Xiaohong Zhang, Jens Wickert. 2018. “Multi-GNSS Phase Delay Estimation and PPP Ambiguity Resolution: GPS, BDS, GLONASS, Galileo”. Journal of Geodesy 92(6): 579-608. DOI: https://doi.org/10.1007/s00190-017-1081-3.
  • 19. Li Xingxing, Yongqiang Yuan, Jiande Huang, Yiting Zhu, Jiaqi Wu, Yun Xiong, Xin Li, Keke Zhang. 2019. “Galileo and QZSS Precise Orbit and Clock Determination Using New Satellite Metadata”. Journal of Geodesy 93(8): 1123-1136. DOI: https://doi.org/10.1007/s00190-019-01230-4.
  • 20. Ługowska Iwona, Wojciech Woźniak, Teresa Klepacka, Elzbieta Michalak, Katarzyna Szamotulska. 2011. “A Prognostic Evaluation of Vascular Endothelial Growth Factor in Children and Young Adults with Osteosarcoma”. Pediatric Blood and Cancer 57(1): 63-68. DOI: https://doi.org/10.1002/pbc.23021.
  • 21. Lyu Daqian, Fangling Zeng, Xiaofeng Ouyang, Haichuan Zhang. 2020. “Real-Time Clock Comparison and Monitoring with Multi-GNSS Precise Point Positioning: GPS, GLONASS and Galileo”. Advances in Space Research 65(1): 560-571. DOI: https://doi.org/10.1016/j.asr.2019.10.029.
  • 22. Maciuk Kamil. 2016. “Different Approaches in GLONASS Orbit Computation from Broadcast Ephemeris”. Geodetski Vestnik 60(3): 455-466. DOI: https://doi.org/10.15292/geodetski-vestnik.2016.03.455-466.
  • 23. Maciuk Kamil, Michał Apollo, Joanna Mostowska, Tomáš Lepeška, Mojca Poklar, Tomasz Noszczyk, Pawel Kroh, Artur Krawczyk, Łukasz Borowski, Polona Pavlovčič-Prešeren. 2021. “Altitude on Cartographic Materials and Its Correction According to New Measurement Techniques”. Remote Sensing 13(3): 444. DOI: https://doi.org/10.3390/rs13030444.
  • 24. Marin Razvan Cristian, Antoine Frappe, Andreas Kaiser. 2017. “Delta-Sigma Based Digital Transmitters with Low-Complexity Embedded-FIR Digital to RF Mixing”. 2016. IEEE International Conference on Electronics, Circuits and Systems, ICECS 2016: 237-240. DOI: https://doi.org/10.1109/ICECS.2016.7841176.
  • 25. Meng Yansong, Wenying Lei, Lang Bian, Tao Yan, Ying Wang. 2020. “Clock Tuning Technique for a Disciplined High Medium-Long-Stability GNSS Oscillator with Precise Clock Drifts for LEO Users”. GPS Solutions 24(4): 1-15. DOI: https://doi.org/10.1007/s10291-020-01025-7.
  • 26. Montenbruck O., A. Hauschild, S. Häberling, B. Braun, G. Katsigianni, U. Hugentobler. 2017. “High-Rate Clock Variations of the Galileo IOV-1/2 Satellites and Their Impact on Carrier Tracking by Geodetic Receivers”. GPS Solutions 21(1): 43-52. DOI: https://doi.org/10.1007/s10291-015-0503-z.
  • 27. Nistor Sorin. 2016. “The Influence of Different Types of Noise on the Velocity Uncertainties in GPS Time Series Analysis”. Acta Geodynamica et Geomaterialia 13(4): 387-394. DOI: https://doi.org/10.13168/AGG.2016.0021.
  • 28. Nistor Sorin, Aurelian Stelian Buda. 2016. “GPS Network Noise Analysis: A Case Study of Data Collected over an 18-Month Period”. Journal of Spatial Science 61(2): 427-440. DOI: https://doi.org/10.1080/14498596.2016.1138900.
  • 29. Novak A., A Novak Sedlackova, A. Stelmach, D. Novak. 2020. “Safety Implications of GNSS Signal Interference at Zilina Airport”. Communications - Scientific Letters of the University of Zilina 22(3): 40-48.
  • 30. Perski A., A. Wieczyński, M. Baczyńska, K. Bożek, S. Kapelko, S. Pawłowski. 2013. “Odbiorniki GNSS w praktyce inżynierskiej”. [In Polish: „GNSS receivers in engineering practice”]. Pomiary Automatyka Robotyka 17(3): 64-77.
  • 31. Dang Bao An Tran. 2019. “Laser a Cascade Quantique stabilise sur peigne de frequence, largement accordable et calibre au SI: application a la spectroscopie de tres haute precision de molecules polyatomiques”. [In French: “Quantum cascade laser stabilized on a frequency comb, largely tunable and calibrated to the SI: application to very high precision spectroscopy of polyatomic molecules”]. Doctoral dissertation. Laboratoire De Physique Des Lasers CNRS UMR7538, Universite Paris 13, Institut Galilee.
  • 32. Quasi-Zenith Satellite System. 2020. “List of Positioning Satellites”.
  • 33. Rabbou Mahmoud Abd, Ahmed El-rabbany. 2016. “Single-frequency precise point positioning using multi-constellation GNSS: GPS, GLONASS, GALILEO and BeiDou”. Geomatica 70(2): 113-122.
  • 34. Roberts Gethin Wyn. 2019. “Noise Comparison of Triple Frequency GNSS Carrier Phase, Doppler and Pseudorange Observables”. Measurement: Journal of the International Measurement Confederation 144: 328-344. DOI: https://doi.org/10.1016/j.measurement.2019.05.011.
  • 35. Rutkowski Rob. 2019. “What's The Differences between the 5 GNSS Constellations?”. Available at: https://blog.bliley.com/the-differences-between-the-5-gnss-satellite-network-constellations.
  • 36. Saleh Hussain Aziz, Rachid Chelouah. 2004. “The Design of the Global Navigation Satellite System Surveying Networks Using Genetic Algorithms”. Engineering Applications of Artificial Intelligence 17(1): 111-122. DOI: https://doi.org/10.1016/j.engappai.2003.11.001.
  • 37. “Section Four”. 1980. The Journal of American Culture 3(1). 104 p. DOI: https://doi.org/10.1111/j.1542-734x.1980.0301_104.x.
  • 38. Shi Chuang, Shiwei Guo, Shengfeng Gu, Xinhao Yang, Xiaopeng Gong, Zhiguo Deng, Maorong Ge, Harald Schuh. 2019. “Multi-GNSS Satellite Clock Estimation Constrained with Oscillator Noise Model in the Existence of Data Discontinuity”. Journal of Geodesy 93(4): 515-528. DOI: https://doi.org/10.1007/s00190-018-1178-3.
  • 39. Stefani Raymond T. 2004. Stability Analysis. The Engineering Handbook. Second Edition. DOI: https://doi.org/10.1525/9780520951785-119.
  • 40. Steigenberger Peter, Steffen Thoelert, Oliver Montenbruck. 2020. “GPS III Vespucci: Results of Half a Year in Orbit”. Advances in Space Research. DOI: https://doi.org/10.1016/j.asr.2020.03.026.
  • 41. Thoelert Steffen, Oliver Montenbruck, Michael Meurer. 2014. “IRNSS-1A: Signal and Clock Characterization of the Indian Regional Navigation System”. GPS Solutions 18(1): 147-152. DOI: https://doi.org/10.1007/s10291-013-0351-7.
  • 42. Walter Todd, Kazuma Gunning, R. Eric Phelts, Juan Blanch. 2018. “Validation of the Unfaulted Error Bounds for ARAIM”. Navigation, Journal of the Institute of Navigation 65(1): 117-133. DOI: https://doi.org/10.1002/navi.214.
  • 43. Xie Wei, Guanwen Huang, Bobin Cui, Pingli Li, Yu Cao, Haohao Wang, Zi Chen, Bo Shao. 2019. “Characteristics and Performance Evaluation of QZSS Onboard Satellite Clocks”. Sensors 19(23). DOI: https://doi.org/10.3390/s19235147.
  • 44. Xu Chang, D. Yue. 2017. “Characterizing Noise in Daily GPS Position Time Series with Overlapping Hadamard Variance and Maximum Likelihood Estimation”. Survey Review 49(355): 239-248. DOI: https://doi.org/10.1080/00396265.2016.1163830.
  • 45. Yang H., Chang Xu, Y. Gao. 2019. “Analysis of GPS Satellite Clock Prediction Performance with Different Update Intervals and Application to Real-Time PPP”. Survey Review 51(364): 43-52. DOI: https://doi.org/10.1080/00396265.2017.1359473.
  • 46. Ye Zhen, Haojun Li, Sanjun Wang. 2021. “Characteristic Analysis of the GNSS Satellite Clock”. Advances in Space Research 68(8): 3314-3326. DOI: https://doi.org/10.1016/j.asr.2021.06.030.
  • 47. Yunck Thomas P., William G. Melbourne, C.L. Thornton. 1985. “GPS-Based Satellite Tracking System for Precise Positioning”. IEEE Transactions on Geoscience and Remote Sensing GE-23(4): 450-457. DOI: https://doi.org/10.1109/TGRS.1985.289434.
  • 48. Zucca Cristina, Patrizia Tavella. 2005. “The Clock Model and Its Relationship with the Allan and Related Variances”. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 52(2): 289-295. DOI: https://doi.org/10.1109/TUFFC.2005.1406554.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41b094af-d7e8-494f-bf10-cd99faf70d9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.