PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of FSP process modification on selected properties of Al-Si-Cu/SiCp composite surface layer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ modyfikacji procesu FSP na wybrane właściwości warstwy wierzchniej w kompozytach Al-Si-Cu/SiCp
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of mechanical and tribological tests conducted on the surface of Al-Si-Cu/SiCp composite reinforced with SiC particles and modified by friction stir processing (FSP) with different parameters. Changes in the distribution of the reinforcement particles on the modified surface of the composite were calculated and analyzed using a new analytical RVE theory with Eisenstein-Rayleigh-Mityushev sums (ERM-sum) (see the definitions below), and PointSel software. The Vickers hardness test with a 1 N load and the ball-on-disc method were used to test the material properties. A high degree of homogenization of the tested material was observed as a result of its modification, as evidenced by an approximately 4-fold reduction in the size of representative volume element (RVE) cells. The size of the RVE cell decreased almost four times for the material after modification, which indicates the high level of homogenization of the tested material. Moreover, we observed a reduction by order of magnitude of the anisotropy coefficient of the distribution of the reinforcing phase particles after the modification process. A 30% increase in the Vickers microhardness of the representative areas was obtained for the modified composites. After the FSP modification process the friction coefficient increases by 40%, and almost 25% decrease in the specific wear rate is observed. Both effects are attributed to the achieved homogenization of particle distribution and reduction of particle size up to 38%.
PL
Przedstawiono wyniki badań właściwości mechanicznych i tribologicznych powierzchni kompozytów Al-Si-Cu/SiCp modyfikowanych metodą FSP z różnymi parametrami. Zmianę rozkładu cząstek wzmacniających na powierzchni kompozytu zbadano z wykorzystaniem nowej analitycznej teorii RVE oraz ERM-sums i programu PointSel. Testy twardości przeprowadzono metodą Vickersa przy obciążeniu 1 N, a testy ścieralności wykonano metodą ball-on-disc. Po procesie modyfikacji stwierdzono wysoki stopień homogenizacji, który cechował się około czterokrotnym zmniejszeniem wielkości komórki RVEc oraz spadkiem o rząd wielkości wartości współczynnika anizotropii rozkładu cząstek fazy wzmacniającej. Zaobserwowano około 30% wzrost mikrotwardości Vickersa w modyfikowanym kompozycie. Po procesie modyfikacji FSP stwierdzono również 40% wzrost wartości współczynnika tarcia oraz blisko 25% spadek wartości wskaźnika zużycia, wynikający z ujednorodnienia struktury i redukcji wielkości cząstek SiC, dochodzącej do 38%.
Rocznik
Strony
161--168
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Independent Researcher in collaboration with Materialica + Research Group, Poland
  • Institute of Technology, Pedagogical University of Krakow, ul. Podchorążych 2, 30-084 Krakow, Materialica + Research Group, Poland
  • Institute of Technology, Pedagogical University of Krakow, ul. Podchorążych 2, 30-084 Krakow, Materialica + Research Group, Poland
  • Independent Researcher in collaboration with Materialica + Research Group, 606-3000 Bathurst St., Toronto, ON, M6B 3B4, Canada
Bibliografia
  • [1] Sharifi E.M., Karimzadeh F., Enayati M., Fabrication and evaluation of mechanical and tribological properties of born carbide reinforced aluminum matrix nanocomposites, Materials and Design 2011, 32, 6, 3263-3271.
  • [2] Salehi M., Farnoush H., Mohandesi J., Fabrication and characterization of functionally graded alsic nanocomposite by using a novel multistep friction stir processing, Materials and Design 2014, 63, 419-426.
  • [3] Szymański Ł., Olejnik E., Tokarski T., Kurtyka D., Drożyński D., Żymankowska-Kumon S., Reactive casting coatings for obtaining in situ composite layers based on fe alloys, Surface and Coatings Technology 2018, 350, 346-358.
  • [4] Dolata A.J., Dyzia M., Jaegermann Z., Structure and physical properties of alumina ceramic foams designed for cetrifugal infiltration process, Composites Theory and Practice 2017, 17(3), 136-143.
  • [5] Olejnik E., Szymański Ł., Tokarski T., Tumidajewicz M., Tic - based local composite reinforcement obtained in situ in ductile iron based castings with use of rode preform, Materials Letters 2018, 222, 192-195.
  • [6] Boczkal S., Dolata A.J., Nowak M., Effect of SiC and GR reinforcement particles on the structure and functional properties of composite casting, Archives of Metallurgy and Materials 2016, 61, 1, 399-404.
  • [7] Zhang X., Quan G., Wei W., Preliminary investigation on joining performance of SiCp reioforced aluminium metal matrix composite (Al/SiCp-mmc) by vacuum brazing, Composites Part A: Applied Science and Manufacturing 1999, June, 30, 6, 823-827.
  • [8] Ellis M.B.D., Joining of Al-based metal matrix composites - a review, Materials and Manufacturing Processes 2007, April, 11,1, 45-66.
  • [9] Taha M.A., Practicalization of cast metal matrix composites (mmccs), Materials & Design 2001, September, 22, 6, 431-441.
  • [10] Ibrahim I.A., Mohamed F.A., Lavernia E.J., Particulate reifnorced metal matrix composites - a review, Journal of Materials Science 1991, March, 26, 5, 1137-1156.
  • [11] Miracle D., Metal matrix composites - from science to technological significance, Composites Science and Technology 2005, 65, 15, 2526-2540.
  • [12] Hashim J., Looney L., Hashmi M., Metal matrix composites: production by the stir casting method, Journal of Materials Processing Technology 1999, August, 92-93, 1-7.
  • [13] Yueguang W., Particulate size effect in the particle-reinforced metal-matrix composites, Acta Mechanica Sinica 2001, February 17, 1, 45-58.
  • [14] Zhang P., Li F., Effect of particle characteristics on deformation of particle reinforced metal matrix composites, Transactions of Nonferrous Metals Society of China 2010, 20, 4, 655-661.
  • [15] Li Y., Ramesh K., Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal - matrix composites at high rates of strain, Acta Materialia 1998, 46, 16, 5633-5646.
  • [16] Kurtyka P., Rylko N., Tokarski T., Wójcicka A., Pietras A., Cast aluminium matrix composites modified with using FSP process changing of the structure and mechanical properties, Composite Structures 2015, August, 133, 959-967.
  • [17] Kurtyka P., Rylko N., Quantitative analysis of the particles distributions in reinforced composites, Composite Structures 2017, 182, 412-419.
  • [18] Krzaczek B., Rylko N., Kurtyka P., Effective conductivity of particle-reinforced composites with cracks at particle-matrix interface, Composites Theory and Practice 2018, 18(2), 115-120.
  • [19] Agaliotis E., Rosenberger M., Ares A., Schvezov C., Influence of the shape of the particles in the solidification of composite materials, Procedia Materials Science 2012, December, 1, 58-63.
  • [20] Drygaś P., Gluzman S., Mityushev V., Nawalaniec W., Applied Analysis of Composite Media, Analytical and Computational Results for Materials Scientists and Engineers, Woodhead Publishing, 2019.
  • [21] Lakshmipathy J., Kulendran B., Reciprocating wear behaviour of 7075Al/SiC and 6061Al/Al2O3 composites: A study of effect of reinforcement, stroke and load, Tribology in Industry 2014, June, 36, 2, 117-126.
  • [22] Cerit A., Baki Karamis M., Nair F., Yildizli K., Effect of reinforcement particle size and volume fraction on wear behavior of metal matrix composites, Journal of the Balkan Tribological Association 2008, January 12, 4, 482-489.
  • [23] Deshmanya I.B., Purohit G., Development of mathematical model to predict micro-hardness of Al7075 and Al2O3 composites produced by stir-casting, Journal of Engineering Science and Technology Review 2012, March, 5, 1, 44-50.
  • [24] Pradhan S., Tapan G.S., Barman K., Sahoo P., Effect of SiC weight percentage on tribological properties of Al-SiC metal matrix composites under acid environment, Journal Tribologi 2017, June, 13, 21-35.
  • [25] Wieczorek J.M., Śledziona J., Dolata-Grosz J., Dyzia M.A., Zużycie i struktura powierzchni po współpracy w warunkach tarcia technicznie suchego w kompozytach AK12 - cząstki ceramiczne, Kompozyty (Composites) 2003, 3, 6, 131-135.
  • [26] Dolata A.J., Dyzia M., Wieczorek J., Tribological properties of single (AlSi7/SiCp, AlSi7/GCsf) and hybrid (AlSi7/SiCp+GCsf) composite layers formed in sleeves via centrifugal casting, Materials 2019, 12(17), Article Number 2803; DOI: 10.3390/ma12172803.
  • [27] Chaubey A., Prashanth K.G., Wang Z., Scudino S., Mukhopadhyay N.K., Eckert J., Effect of particle size on microstructure and mechanical properties of al-based composite reinforced with 10 vol.% mechanically alloyed Mg-7.4% Al Particles, Technologies 2016, November, 4, 37, 1-8.
  • [28] Llorca J., An analysis of the influence of reinforcement fracture on the strength of discontinuously-reinforced metal-matrix composites, Acta Metallurgica et Materialia 1995, 43, 1, 181-192.
  • [29] Gan Y.X., Solomon D., Reinbolt M., Friction stir processing of particle reinforced composite materials, Materials 2010, January, 3, 1, 329-350.
  • [30] Balakrishnan M., Dinaharan I., Palanivel R., Sivaprakasam R., Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing, Journal of Magnesium and Alloys 2015, January, 3, 1, 76-78.
  • [31] Azimi-Roeen G., Kashani-Bozorg S.F., Nosko M., Stefan N., Matko I., Formation of Al/(Al13Fe4+Al2O3) nanocomposites via mechanical alloying and friction stir processing, Journal of Materials Engineering and Performance 2018, January, 27, 2, 471-482.
  • [32] Bauri R., Yadav D., Metal Matrix Composites by Friction Stir Processing, Elsevier, Woburn 2017.
  • [33] Jerome S., Govind Bhalchandra S., Kumaresh Babu S.P., Ravisankar B., Influence of microstructure and experimental parameters on mechanical and wear properties of Al-TiC surface composite by FSP route, Journal of Minerals and Materials Characterization and Engineering 2012, 11, 5, 493-507.
  • [34] Wójcicka A., Mroczka K., Kurtyka P., Binkowski M., Wróbel Z., X-ray microtomography analysis of the aluminum alloy composite reinforced by SiC after friction stir processing, Journal of Materials Engineering and Performance 2014, June, 23, 9, 3215-3221.
  • [35] Abbasi M., Bagheri B., Dadaei M., Omidvar H., Rezaei M., The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface, The International Journal of Advanced Manufacturing Technology 2014, November, 77, 12, 2051-2058.
  • [36] Bozkurt Y., Uzun H., Salman S., Microstructure and mechanical properties of friction stir welded particulate reinforced AA2124/SiC/25p-T4 composite, Journal of Composite Materials 2011, September, 45, 21, 2237-2245.
  • [37] Nallusamy D., Rajaram Narayanan M., An experimental analysis of aluminium alloy with tungsten carbide metal matrix composite through in-situ method using SEM, Rasayan Journal of Chemistry 2018, February, 11, 1, 355-360.
  • [38] Gluzman S., Mityushev V., Nawalaniec W., Computational Analysis of Structured Media, Academic Press, 2018.
  • [39] Molina P., Amalberto R., Rosso M., Mechanical characterization of aluminium alloys for high temperature applications part 2: Al-Cu, Al-Mg alloys, Metallurgical Science and Technology 2011, 29, 2, 5-13.
  • [40] Karthikeyan L., Senthilkumar V.S., Balasubramanian V., Natarajan S., Mechanical property and microstructural changes during friction stir processing of cast aluminum 2285 alloy, Materials and Design 2009, June, 30, 6, 2237-2242.
  • [41] Bousquet E., Quintin A.P., Puiggali M., Devos O., Touzet M., Relationship between microstructure, microhardness and corrosion sensitivity of an AA2024-T3 friction stir welded joint, Corrosion Science 2011, 53, 9, 3026-3034.
  • [42] Mishra R., Ma Z., Friction stir welding and processing, Materials Science and Engineering: R: Reports 2005, 50, 1, 1-78.
  • [43] Mroczka K., Dutkiewicz J., Lityńska-Dobrzyńska L., Pietras A., Microstructure and properties of fsw joints of 2017A/6013 aluminium alloys sheets, Archives of Materials Science and Engineering 2008, 33, 2, 93-96.
  • [44] Mroczka K., Dutkiewicz J., Pietras A., Microstructure of friction stir welded joints of 2017a aluminium alloy sheets, Journal of Microscopy 2010, March, 237, 3, 521-525.
  • [45] Kurtyka P., Effect of plastic deformation on the microstructure, size and distribution of SiC reinforcing particles in the cast F3K.10S composite, Rudy i Metale Nieżelazne Recykling 2015, 60, 7, 316-323.
  • [46] Hill R., Elastic properties of reinforced solids: Some theoretical principles, Journal of the Mechanics and Physics of Solids 1963, 11, 5, 357-372.
  • [47] Mityushev V., Representative cell in mechanics of composites and generalized Eisenstein-Rayleigh sums, Complex Variables and Elliptic Equations 2006, 51, 8-11, 1033-1045.
  • [48] Czapla R., Nawalaniec W., Mityushev V., Effective conductivity of random two-dimensional composites with circular non-overlapping inclusions, Computational Materials Science 2012, 63, 118-126.
  • [49] Nawalaniec W., Basic sums: A python package for computing structural sums and the effective conductivity of random composites, Journal of Open Source Software 2019, March, 4.
  • [50] Shafiei-Zarghani A., Kashani-Bozorg S., Zarei-Hanzaki A., Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing, Materials Science and Engineering: A 2009, 500, 1, 84-91.
  • [51] Ma Z., Friction stir processing technology: A review, Metallurgical and Materials Transactions A 2008, 39, 3, 642-658.
  • [52] Rana H., Badheka V., Kumar A., Fabrication of Al7075/B4c surface composite by novel friction stir processing (FSP) and investigation on wear properties, Procedia Technology 2016, February, 23, 519-528.
  • [53] Morisada Y., Fujii H., Nagaoka T., Fukusumi M., Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31, Materials Science and Engineering: A 2006, 433, 1, 50-54.
  • [54] Ma Z., Sharma S., Mishra R., Effect of friction stir processing on the microstructure of cast A356 aluminum, Materials Science and Engineering: A 2006, 433, 1, 269-278.
  • [55] Olson E., Particle shape factors and their use in image analysis - Part 1: Theory, Journal of GXP Compliance 2011, 15, 3, 85-96.
  • [56] Guerra M., Schmidt C., McClure J., Murr L., Nunes A., Flow patterns during friction stir welding, Materials Characterization 2002, 49, 2, 95-101.
  • [57] Naeem H., Characterizations particulates of crushed particles (Al-Zn-Mg-Cu-Ni) for fabrication of surface composites al-alloy using friction stir processing, Muthanna Journal of Engineering and Technology (MJET) 2017, 56-65.
  • [58] Chen Y., Ni Q., Ke L., Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys, Transactions of Nonferrous Metals Society of China 2012, 22, 2, 299-304.
  • [59] Iwaszko J., Kudła K., Effect of friction stir processing (FSP) on microstructure and hardness of AlMg10/SiC composite, Bulletin of the Polish Academy of Sciences: Technical Sciences 2019, 67, 2, 185-182.
  • [60] Zheng F., Wu Y., Peng L., Li, X., Fu P., Ding W., Microstructures and mechanical properties of friction stir processed Mg-2.0Nd-0.3Zn-1.0Zr magnesium alloy, Journal of Magnesium and Alloys 2013, June, 1, 2, 122-127.
  • [61] Woo W., Balogh L., Ungar, T., Choo H., Feng Z., Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis, Materials Science and Engineering: A 2008, 498, 1,308-313.
  • [62] McNelley T., Swaminathan S., Su J., Recrystallization mechanisms during friction stir welding/processing of aluminum alloys, Scripta Materialia 2008, 58, 5, 349-354.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41af246f-3ddb-4294-84c4-3f94e7d78496
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.