PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Hardener on the Emission of Harmful Substances from Moulding Sands with Furan Resin in the Pyrolysis Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The furan resin offers advantages such as high intensity, low viscosity, good humidity resistance and is suitable for cast different casting alloys: steel, cast iron and non-ferrous metal casting. For hardening furan resins are used different hardeners (acid catalysts). The acid catalysts have significant effects on the properties of the cured binder (e,g. binding strength and thermal stability) [1 - 3]. Investigations of the gases emission in the test foundry plant were performed according to the original method developed in the Faculty of Foundry Engineering, AGH UST. The analysis is carried out by the gas chromatography method with the application of the flame-ionising detector (FID) (TRACE GC Ultra THERMO SCIENTIFIC).
Rocznik
Strony
107--111
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering Reymonta 23, 30-059 Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering Reymonta 23, 30-059 Cracow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering Reymonta 23, 30-059 Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering Reymonta 23, 30-059 Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering Reymonta 23, 30-059 Cracow, Poland
Bibliografia
  • [1] Shindo, A. & Izumino, K. (1994). Structural variation during pyrolisis of furfuryl alcohol and furfural-furfuryl alcohol resins. Carbon. 32, 1233-1243.
  • [2] Coss, W. W. Richmond III. (1984). U.S. Patent No. 4,451, Catalyst composition and method for curing furan-based foundry binders. Patent and Trademerk Office.
  • [3] Akerberg, D.W. Huntley III. (1984). U.S. Patent No. 4,439. Catalyst system for furan resins. Patent and Trademerk Office.
  • [4] Tiedje, N., Crepaz, R., Eggert, T. & Bey, N. (2010). Emission of organic compounds from mould and core binders used for casting iron, aluminum and bronze in sand moulds. J Environ Sci. Health A., 45,1866-1876.
  • [5] Technikon # 1411-123 GJ, Baseline: PCS of furan cores, green sand without sea coal, iron. U.S. Army Contract DAAE30-02-C-1095 FY 2004 WBS #1.2.3.: 2005.
  • [6] Man, YB., Kang, Y., Wang, HS. et al. (2013). Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. J Hazard Mater., 261, 770-776. DOI: 10.10.16/j.jhazmat.2012.11.067.
  • [7] Durmusoglu, E., Taspinar, F., & Karademir, A. (2010). Health risk assessment of BTEX emission in the landfill environment. J Hazard Mater.,176, 807-870.
  • [8] Regulation EC No. 1272/2008.
  • [9] Zhang, H., Zhao, H., Zheng, K., Li, X., Liu, G. & Wang, Y. (2014). Diminishing hazardous air pollutant emission form pyrolysis of furan no-bake using methanesulfonic acid as the binder catalyst. J. Therm. Anal. Calorim., 116, 373-381.
  • [10] Liang, J. & Tsay, G. (2010). Composition and yield of the pernicious and stench gases in furan resin sand model founding process. J. Environ. Eng. Mange.,20(2), 115-125.
  • [11] Holtzer, M., Bobrowski, A., Dańko, R., Kmita, A., Żymankowska-Kumon, S., Kubecki, M. & Górny, M. (2014). Emission of Polycyclic Aromatic Hydrocarbons (PAHs) and Benzene, Toluene, Ethylbenzene and Xylene (BTEX) from the furan moulding sands with addition of the reclaim. Metallurgia 53(4), 451–454.
  • [12] Holtzer, M., Żymankowska-Kumon, S., Bobrowski, A., Dańko, R. & Kmita, A. (2014). The Influence of reclaim addition on the emission of PAHs and BTEX from moulding sands with furfuryl resin with the average amount of furfuryl alcohol. Archives of Foundry Engineering, 14 (1). 37-42.
  • [13] Holtzer, M., Dańko, R. (2013). Harmfulness evaluation of binding material used for molding and core sands of the new generation. Publishers “AKAPIT”, Cracow.
  • [14] Wang, Y.J., Su, L., Li, X.Y, Duan, L., Wang, C. & Huang, T. (2011). Hazardous air pollutants formation from pyrolysis of typical Chinese casting materials. Environ. Sci Technol. 45, 6539-6544.
  • [15] Xie, S.Z., Li, F., Liu, C.J., Liang, J.H. (2012). Development and application of furfuryl alcohol substitute materials furan resin for foundry. The 13th 21 provinces (cities, districts) 4 cities, casting and the seventh meeting of Anhui foundry technology conference proceedings Anhui: Mechanical Engineering Society in Anhui Province.
  • [16] Cuoura, M., Belgacem, NM. & Gandini, A. (1997). The acid-catalyzed polycondensation of furfuryl alcohol: old puzzles unraveled. Macromol Symp. 122, 263 - 268.
  • [17] Benz, N. & Froberg, K. (2013). Ecofriendly cold –hardening furane resins with a content of free furfuryl alcohol under 25%. Lit. Proizv, 6, 15 - 19.
  • [18] Holtzer. M., Dańko, J. at al. (2.04.2012). No P-398 709. Station for research of the volume and harmfulness of gases compounds from the materials used in foundry and metallurgical processes. The Polish Patent Office.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41ac6cea-1182-4cf7-a2e3-7dd4ac85110c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.