Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the concept of the method of determining the direction of ultrasonic signal arrival, i.e., the azimuth and elevation angles. This method is an extension of the previous approach which was proposed to determine only the azimuth angle. The approach is based on the indirect phase determination. This makes it possible to tolerate spacing of receivers greater than half the wavelength of the received signal. At the same time, it provides increased measurement accuracy and reduced hardware requirements. To check the robustness of the method, simulations were carried out for the geometric arrangement of the receivers of the sonar module, for which the method was then implemented. This sonar module was used in the conducted experiments. The results of these simulations and experiments are included in the paper and discussed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
107--120
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab., wykr.
Twórcy
autor
- Department of Cybernetics and Robotics, Faculty of Electronics, Photonics and Microsystems Wrocław University of Science and Technology Wrocław, Poland
Bibliografia
- 1. Allevato G., Rutsch M., Hinrichs J., Pesavento M., Kupnik M. (2020), Embedded air-coupled ultrasonic 3D sonar system with GPU acceleration, [in:] 2020 IEEE SENSORS, pp. 1-4, doi: 10.1109/SENSORS47125.2020.9278601.
- 2. Barabell A. (1983), Improving the resolution performance of eigenstructure-based direction-finding algorithms, [in:] ICASSP’83. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 336-339, doi: 10.1109/ICASSP.1983.1172124.
- 3. Cadzow J.A. (1990), Multiple source location the signal subspace approach, IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(7): 1110-1125, doi: 10.1109/29.57540.
- 4. Chen H., Ballal T., Muquaibel A.H., Zhang X., Al-Naffouri T.Y. (2020), Air writing via receiver array-based ultrasonic source localization, IEEE Transactions on Instrumentation and Measurement, 69(10): 8088-8101, doi: 10.1109/TIM.2020.2991573.
- 5. Choi K.H., Ra W.-S., Park S.-Y., Park J.B. (2014), Robust least squares approach to passive target localization using ultrasonic receiver array, IEEE Transactions on Industrial Electronics, 61(4): 1993-2002, doi: 10.1109/TIE.2013.2266076.
- 6. Cholewiński M., Dziergwa M., Kaczmarek P.M., Kędzierski J., Wnuk M. (2013), Malaga minimodule [in Polish], Technical report SPR no 13/2013, Wrocław University of Science and Technology.
- 7. Dokmanic I., Tashev I. (2014), Hardware and algorithms for ultrasonic depth imaging, [in:] 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6702-6706, doi: 10.1109/ICASSP.2014.6854897.
- 8. Gialich M., Im A., Lee T., Aliyazicioglu Z., Hwang H.K. (2012), DOA estimation using array antenna with large inter-element spacing, [in:] 2012 11th International Conference on Signal Processing (ICSP), pp. 1701-1704, doi: 10.1109/ICoSP.2012.6491908.
- 9. Haardt M., Nossek J.A. (1995), Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden, IEEE Transactions on Signal Processing, 43(5): 1232-1242, doi: 10.1109/78.382406.
- 10. Kapoor R., Ramasamy S., Gardi A., Schyndel R.V., Sabatini R. (2018), Acoustic sensors for air and surface navigation applications, Sensors, 18(2): 499, doi: 10.3390/s18020499.
- 11. Kerstens R., Laurijssen D., Steckel J. (2017), Low-cost one-bit MEMS microphone arrays for in-air acoustic imaging using FPGA’s, [in:] 2017 IEEE SENSORS, pp. 1-3, doi: 10.1109/ICSENS.2017.8234087.
- 12. Kerstens R., Laurijssen D., Steckel J. (2019), eRTIS: A fully embedded real time 3D imaging sonar sensor for robotic applications, [in:] 2019 International Conference on Robotics and Automation (ICRA), pp. 1438-1443, doi: 10.1109/ICRA.2019.8794419.
- 13. Kleeman L. (1995), A three dimensional localiser for autonomous robot vehicles, Robotica, 13(1): 87-94, doi: 10.1017/S0263574700017513.
- 14. Kreczmer B. (2018), Azimuth angle estimation of ultrasonic signal arrival by using multi-pair receiver system, [in:] Automation 2018. Advances in Intelligent Systems and Computing, Szewczyk R., Zielinski C., Kaliczynska M. [Eds.], 743: 672-681, doi: 10.1007/978-3-319-77179-3_65.
- 15. Kreczmer B. (2019), Estimation of the azimuth angle of the arrival direction for an ultrasonic signal by using indirect determination of the phase shift, Archives of Acoustics, 44(3): 585-601, doi: 10.24425/aoa.2019.129273.
- 16. Kreczmer B. (2021), Influence of signal interference on determining direction of arrival by using the indirect phase determination method, [in:] Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. AUTOMATION 2021. Advances in Intelligent Systems and Computing, Szewczyk R., Zielinski C., Kaliczynska M. [Eds.], Springer International Publishing, pp. 319-328, doi: 10.1007/978-3-030-74893-7_30.
- 17. Krim H., Viberg M. (1996), Two decades of array signal processing research: The parametric approach, IEEE Signal Processing Magazine, 13(4): 67-94, doi: 10.1109/79.526899.
- 18. Krishnaveni V., Kesavamurthy T., Aparna B. (2013), Beamforming for direction-of-arrival (DOA) estimation - A survey, International Journal of Computer Applications, 61(11): 4-11, doi: 10.5120/9970-4758.
- 19. Li P., Li C., Ye C., Zhang X. (2020), Low complexity DOA estimation using coprime circular array, [in:] 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), pp. 592-597, doi: 10.1109/ICSIP49896.2020.9339298.
- 20. Peremans H., Audenaert K., Van Campenhout J.M. (1993), A high-resolution sensor based on tri-aural perception, IEEE Transactions on Robotics and Automation, 9(1): 36-48, doi: 10.1109/70.210793.
- 21. Roy R., Kailath T. (1989), ESPRIT estimation of signal parameters via rotational invariance techniques, IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7): 984-995, doi: 10.1109/29.32276.
- 22. Roy R., Paulraj A., Kailath T. (1986), Direction-of-arrival estimation by subspace rotation methods - ESPRIT, [in:] ICASSP ’86. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2495-2498, doi: 10.1109/ICASSP.1986.1168673.
- 23. Schmidt R. (1986), Multiple emitter location and signal parameter estimation, IEEE Transactions on Antennas and Propagation, 34(3): 276-280, doi: 10.1109/TAP.1986.1143830.
- 24. Steckel J., Boen A., Peremans H. (2013), Broadband 3-D sonar system using a sparse array for indoor navigation, robotics, IEEE Transactions on Robotics, 29(1): 161-171, doi: 10.1109/TRO.2012.2221313.
- 25. Sun F., Lan P., Gao B. (2015), Partial spectral search-based DOA estimation method for co-prime linear arrays, Electronics Letters, 51(24): 2053-2055, doi: 10.1049/el.2015.2261.
- 26. Tayem N., Kwon H.M. (2003), Conjugate ESPRIT (C-SPRIT), [in:] Proceedings of IEEE Military Communications Conference, 2003, MILCOM 2003, pp. 1155-1160, doi: 10.1109/MILCOM.2003.1290358.
- 27. Van Trees H.L. (2004), Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory Detection, Estimation, and Modulation Theory, John Wiley & Sons, Inc.
- 28. Van Veen B.D., Buckley K.M. (1988), Beamforming: A versatile approach to spatial filtering, IEEE ASSP Magazine, 5(2): 4-24, doi: 10.1109/53.665.
- 29. Verellen T., Kerstens R., Steckel J. (2020), High-resolution ultrasound sensing for robotics using dense microphone arrays, [in:] IEEE Access, 8: 190083-190093, doi: 10.1109/ACCESS.2020.3032177.
- 30. Yang X., Wu X., Li S., Sarkar T.K. (2018), A fast and robust DOA estimation method based on JSVD for co-prime array, [in:] IEEE Access, 6: 41697-41705, doi: 10.1109/ACCESS.2018.2860680.
- 31. Zhou C., Shi Z., Gu Y., Shen X. (2013), DECOM: DOA estimation with combined MUSIC for coprime array, [in:] 2013 International Conference on Wireless Communications and Signal Processing, pp. 1-5, doi: 10.1109/WCSP.2013.6677080.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41aa0069-706e-4442-a210-9839a0cbced5