PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Main engine of transport ship inlet air cooling by ejector chiller

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiency of cooling the air at the inlet of marine slow speed diesel engine turbocharger by ejector chiller utilizing the heat of exhaust gases and scavenge air were analyzed. The values of air temperature drop at the inlet of engine turbocharger and corresponding decrease in fuel consumption of the engine at varying climatic conditions on the route line Odessa-Yokohama-Odessa were evaluated.
Słowa kluczowe
Rocznik
Strony
124--133
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
  • Gdańsk University of Technology 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
Bibliografia
  • [1] MAN B&W ME/ME-C/ME-GI/ME-B-TII engines, MAN Diesel, Copenhagen, Denmark 2010, p. 389.
  • [2] Wärtsilä Environmental Product Guide, online, available at: https://cdn.wartsila.com/docs/default-source/product-files/egc/product-guide-o-env-environmental-solutions.pdf (April 2017).
  • [3] MAN Diesel Turbo, CEAS Engine Calculations, online, 2019, available at: https://marine.man-es.com/two-stroke/ceas.
  • [4] MAN Diesel & Turbo, MAN B&W Two-stroke Marine Engines. Emission Project Guide, online, available at: https://marine.man-es.com/applications/projectguides/2stroke/content/special_pg/7020-0145-09_uk.pdf (accessed 9 October 2018).
  • [5] Radchenko A., Mikielewicz D., Forduy S., Radchenko M., Zubarev A., Monitoring the fuel efficiency of gas engine in integrated energy system [in:] Nechyporuk M. et al. (eds.), ICTM 2019, AISC, Springer, Vol. 1113, Cham 2020, pp. 361-370.
  • [6] Radchenko R., Kornienko V., Pyrysunko M., Bogdanov M., Andreev A., Enhancing the efficiency of marine diesel engine by deep waste heat recovery on the base of its simulation along the route line [in:] Nechyporuk M. et al. (eds.), ICTME, AISC, Springer, Vol. 1113, Cham 2020, pp. 337-350.
  • [7] Radchenko A., Stachel A., Forduy S., Portnoi B., Rizun O., Analysis of the efficiency of engine inlet air chilling unit with cooling towers [in:] Ivanov V. et al. (eds.), ADSM III (DSMIE 2020), LNME, Springer, Cham 2020, pp. 322-331.
  • [8] Konovalov D., Kobalava H., Radchenko M., Scurtu I.C., Radchenko R., Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling [in:] TE-RE-RD 2020, E3S Web of Conferences, Vol. 180, 2020, No. 01012.
  • [9] Radchenko A., Trushliakov E., Kosowski K., Mikielewicz D., Radchenko M., Innovative turbine intake air cooling systems and their rational designing, Energies, 2020, Vol. 13, Issue 23, No. 6201.
  • [10] Trushliakov E., Radchenko A., Forduy S., Zubarev A., Hrych A., Increasing the operation efficiency of air conditioning system for integrated power plant on the base of its monitoring [in:] Nechyporuk M. et al. (eds.), ICTME (ICTM 2019), AISC, Springer, Vol. 1113, Cham 2020, pp. 351-360.
  • [11] Butrymowicz D., Gagan J., Śmierciew K., Łukaszuk M., Dudar A., Pawluczuk A., Łapiński A., Kuryłowic A., Investigations of prototype ejection refrigeration system driven by low grade heat, HTRSE-2018, E3S Web of Conferences 2018, Vol. 70, p. 7.
  • [12] Forduy S., Radchenko A., Kuczynski W., Zubarev A., Konovalov D., Enhancing the fuel efficiency of gas engines in integrated energy system by chilling cyclic air [in:] Tonkonogyi V. et al. (eds.), Grabchenko’s ICAMP, InterPartner-2019, LNME, Springer, Cham 2020, pp. 500-509.
  • [13] Radchenko R., Pyrysunko M., Radchenko A., Andreev A., Kornienko V., Ship engine intake air cooling by ejector chiller using recirculation gas heat [in:] Tonkonogyi V. et al. (eds.), AMP. InterPartner-2020, LNME, Springer, Cham 2021, pp. 734-743.
  • [14] Radchenko M., Radchenko R., Tkachenko V., Kantor S., Smolyanoy E., Increasing the operation efficiency of railway air conditioning system on the base of its simulation along the route line [in:] Nechyporuk M. et al. (eds.), ICTME (ICTM 2019), AISC, Springer, Vol. 1113, Cham 2020, pp. 461-467.
  • [15] Trushliakov E., Radchenko M., Bohdal T., Radchenko R., Kantor S., An innovative air conditioning system for changeable heat loads [in:] Tonkonogyi V. et al. (eds.), ICAMP, InterPartner-2019, LNME, Springer, Cham 2020, pp. 616-625.
  • [16] Trushliakov E., Radchenko A., Radchenko M., Kantor S., Zielikov O., The Efficiency of refrigeration capacity regulation in the ambient air conditioning systems [in:] Ivanov V. et al. (eds.), Advances in Design, Simulation and Manufacturing III (DSMIE 2020), LNME, Springer, Cham 2020, pp. 343-353.
  • [17] Luo C., Luo K., Wang Y., Ma Z., Gong Y., The effect analysis of thermal efficiency and optimal design for boiler system, Energy Procedia, Vol. 105, 2017, pp. 3045-3050.
  • [18] Syed Safeer Mehdi Shamsi, Assmelash A. Negash, Gyu Baek Cho, Young Min Kim, Waste heat and water recovery system optimization for flue gas in thermal power plants, Sustainability, Vol. 11, Issue 7, No. 1881, 2019.
  • [19] Kornienko V., Radchenko M., Radchenko R., Konovalov D., Andreev A., Pyrysunko M., Improving the efficiency of heat recovery circuits of cogeneration plants with combustion of water-fuel emulsions, Thermal Science, Vol. 25, Issue 1, Part В, 2021, pp. 791-800.
  • [20] Baldi S., Quang T.L., Holub O., Endel P., Real-time monitoring energy efficiency and performance degradation of condensing boilers, Energy Conversion and Management, Vol. 136, 2017, pp. 329-339.
  • [21] Fan C., Pei D., Wei H., A novel cascade energy utilization to improve efficiency of double reheat cycle, Energy Convers. Manag., Vol. 171, 2018, pp. 1388-1396.
  • [22] Sugeng D.A., Ithnin A.M., Amri N.S.M.S., Ahmad M.A., Yahya W.J., Water content determination of steam generated water-in-diesel emulsion, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 49, Issue 1, pp. 62-68.
  • [23] Baskar P., Senthil Kumar A., Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air, Alexandria Engineering Journal, Vol. 56, Issue 1, 2017, pp. 137-146.
  • [24] Patel K.R., Dhiman V., Research study of water-diesel emulsion as alternative fuel in diesel engine - An overview, International Journal of Latest Engineering Research and Applications, Vol. 2, Issue 9, 2017, pp. 37-41.
  • [25] Wojs M.K., Orliński P., Kamela W., Kruczyński P., Research on the influence of ozone dissolved in the fuel-water emulsion on the parameters of the CI engine [in:] IOP Conference Series: Materials Science and Engineering, Vol. 148, 2016, pp. 1-8.
  • [26] Gupta R.K., Sankeerth K.A., Sharma T.K., Rao G., Murthy K.M., Effects of water-diesel emulsion on the emission characteristics of single cylinder direct injection diesel engine - A review, Applied Mechanics and Materials, Vol. 592, 2014, pp. 1526-1533.
  • [27] Kornienko V., Radchenko R., Konovalov D., Andreev A., Pyrysunko M., Characteristics of the rotary cup atomizer used as afterburning installation in exhaust gas boiler flue [in:] Ivanov V. et al. (eds.), ADSM III (DSMIE 2020), LNME, Springer, Cham 2020, pp. 302-311.
  • [28] Kornienko V., Radchenko R., Mikielewicz D., Pyrysunko M., Andreev A., Improvement of characteristics of water-fuel rotary cup atomizer in a boiler [in:] Tonkonogyi V. et al. (eds.), AMPII. InterPartner 2020, LNME, Springer, Cham 2021, pp. 664-674.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41a5be01-0d3b-422f-9928-afcb23e2c1cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.