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Abstract

This paper presents a parallel approach to the Levenberg-Marquardt algorithm
(LM). The use of the Levenberg-Marquardt algorithm to train neural networks is
associated with significant computational complexity, and thus computation time.
As a result, when the neural network has a big number of weights, the algorithm
becomes practically ineffective. This article presents a new parallel approach to the
computations in Levenberg-Marquardt neural network learning algorithm. The
proposed solution is based on vector instructions to effectively reduce the high
computational time of this algorithm. The new approach was tested on several
examples involving the problems of classification and function approximation, and
next it was compared with a classical computational method. The article presents
in detail the idea of parallel neural network computations and shows the obtained
acceleration for different problems.
Keywords: feed-forward neural network, neural network learning algorithm,
Levenberg-Marquardt algorithm, QR decomposition, Givens rotation.

1 Introduction
Currently, artificial intelligence (AI) is

widely used both in science research and in
industry. Among the issues of artificial intel-
ligence, neural networks (NN) deserve special
attention. Continually many researchers pub-

lish a lot of scientific papers about artificial
intelligence [1, 2], especially about neural net-
works e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11]. There
are more and more advanced AI solutions and
methods that are willingly used in industry
and various products. Important areas of neu-
ral networks applications are health care and
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medicine [12, 13, 14, 15], finances [16, 17, 18],
but also safety [19, 20, 21] and entertain-
ment [22, 23].

Each neural network can perform differ-
ent tasks. In order for a given NN to
carry out a specific task, it must be properly
trained. This is done through the training al-
gorithm. The most famous is the backpropaga-
tion method [24] Other methods have also been
derived from it [25, 26, 27]. More complex al-
gorithms based on Newton’s method have also
been developed, an example is proposed in [28]
the Levenberg-Marquardt (LM) algorithm.

The LM algorithm is one of the most pop-
ular methods used for supervised training feed-
forward (FF) neural networks. These neural
networks are made up of a number of layers
and they contain neurons. The first layer of
the network is the input layer and the last layer
is the output layer. All layers except the out-
put layer are hidden layers. Sometimes single-
layer networks are used, but for most applica-
tions, networks consist of more than one layer.
There are various topologies for feedforward
neural networks. The most used is the mul-
tilayer perceptron (MLP). In such a network,
the first layer connects to the network input,
each successive layer connects to the previous
layer only, and the output from the last layer
is the network output. Figure 1 presents an
example of the MLP network. The other FF
topology is the fully connected multilayer per-
ceptron (FCMLP). This type of network differs
from the classic MLP in that the layers connect
to the outputs of all previous layers. Figure 2
presents an example of the FCMLP network. It
can be readily seen that the FCMLP network
with the same number of neurons contains more
weights than a standard MLP network, which
can often reduce the size of the network, and
yet the network can be trained effectively. It is
worth noting that the MLP network is a special
case of the FCMLP network.

Figure 1. Sample MLP neural network.

Figure 2. Sample FCMLP neural network.

The LM algorithm is a very popular and re-
liable method of finding the minimum of func-
tions in most applications, unfortunately, it has
several disadvantages. Sometimes they make
the LM algorithm too computationally expen-
sive and impractical. For many years, re-
searchers have made various attempts to opti-
mize this algorithm.

The LM algorithm belongs to the second-
order methods and joins the advantages of two
methods: the Gauss-Newton method and the
steepest descent method. Unfortunately, like
most neural network training algorithms, the
LM algorithm can also get stuck at a local min-
imum. In first-order methods, one can try to
solve this problem by using the momentum fac-
tor. This approach allows you to jump over
local minima and find the right direction to-
wards the optimal solution point. The mo-
mentum factor value can be set arbitrarily and
does not change during network training, se-
lected from several values depending on the
current gradient, or change dynamically during
network training. This attempt is made in the
article [29]. The authors combined the advan-
tages of the LM and CG methods and devel-
oped two variants of the Levenberg-Marquardt
algorithm with a constant and adaptable mo-
mentum value. The developed algorithms are
more effective in terms of learning time than
the classic LM, but both have high computa-
tional complexity.
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In the case of flat places of the error func-
tion, classical methods of teaching neural net-
works achieve a very low coefficient of conver-
gence. This results in a significant slowing down
of training due to low values of the gradient of
hidden neurons. First-order methods, such as
the steepest descent, use fine-tuning of train-
ing parameters. For more complex second-order
methods such as the LM algorithm, the compu-
tational complexity is very high and the use of
additional training parameters is avoided. In
the paper [30], the authors, to overcome the
impasse in the convergence process caused by
the flat error function, proposed a modifica-
tion involving the compression of weights in the
Levenberg-Marquardt algorithm. This tech-
nique is used to draw neuronal gradients into
a non-linear area of the activation function in
order to accelerate training. The authors noted
a significant improvement in the success rate
compared to the classic variant of the LM al-
gorithm. It should be noted that the proposed
modification does not significantly increase the
computational complexity in the feedforward
network topology.

In the work [31] the authors noticed that
the Jacobian matrix sensitivity coefficients cal-
culated using numerical differentiation meth-
ods give approximate values of gradient deriva-
tives. In some complex problems with transient
states and severe non-linearities, this can lead
to considerable instability in the learning pro-
cess. Thus, the Jacobian matrix of the LM algo-
rithm must be computed as accurately as possi-
ble. The authors proposed a complex method of
variable differentiation to compute the Jacobian
matrix. This solution increases the stability of
the LM training process. Unfortunately, the
computational complexity remains unchanged.

It is also easy to see that in the classical
Levenberg-Marquardt algorithm, the size of the
Jacobian matrix is the main cause of computa-
tional complexity. In the work [32], the authors
present a modification of the LM algorithm for
recording non-rigid images. They proposed to
use the Jacobian matrix once determined in two
successive iterations of the algorithm, instead
of just one. After the classic calculation step of
the LM algorithm, an extra step is performed to

establish a new correction vector. Additionally,
the linear search was used in the calculations to
improve performance. The presented method
is more efficient than the classic LM algorithm
because the Jacobian matrix is computed only
once every two iterations of the algorithm.

The original LM algorithm is extremely ef-
ficient in training small neural networks. In the
case of larger neural networks, the computa-
tional complexity increases significantly due to
the increase in the size of the Jacobian matrix.
As a result, this method becomes ineffective
and rarely used. In the work [9], the authors
present a local modification of the Levenberg-
Marquardt algorithm. They resign from com-
puting a very large Jacobian matrix for the en-
tire network. Instead, there are many small Ja-
cobian matrices for individual neurons in the
network. As a result, the training time was re-
duced by several to tens of times. Additionally,
the number of epochs needed to train the net-
work has been reduced.

It is clear from the above discussion that
many attempts have been made to optimize the
classical Levenberg-Marquardt algorithm. The
main problem of the LM algorithm is the rel-
atively long training time for larger networks.
It is related to the size of the Jacobian ma-
trix. This structure increases with larger net-
works, especially when training using very long
training sets. In such cases, the LM algorithm
becomes impractical due to the high computa-
tional complexity and too long a training time.

The article presents a new approach to cal-
culations in the LM algorithm. It is based on
the use of vector calculations to determine sev-
eral successive steps in multi-step epochs of the
training process. Thanks to this approach, the
computation time is significantly reduced. The
following original and innovative contributions
have been made during the research:

1. The vector computational approach to the
classic Levenberg-Marquardt algorithm has
been presented.

2. The consecutive steps of the vector LM al-
gorithm have been precisely described.

3. The performance of the vector computa-
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tional approach to the LM has been com-
pared with that of the classic Levenberg-
Marquardt algorithm.

4. The original benchmarking procedure was
developed to obtain results for vectors of var-
ious sizes.

5. Both, the vector and classic computational
approach of the LM have been tested on var-
ious topologies of feedforward networks uti-
lizing multiple benchmarks.

6. The proposed computational approach al-
lows for a significant reduction in the com-
putation time of the LM algorithm, and can
also be applied to most of its modifications.

The article consists of several parts. Chap-
ter 2 details the classical Levenberg-Marquardt
algorithm. It includes both a mathematical and
practical approach to implementation. Chapter
3 presents the idea behind this article, which is
a discussion of the parallelism in the LM algo-
rithm. Fundamental differences from the clas-
sical variant and the possibility of vector imple-
mentation are emphasized. In Chapter 4, the
original vector approach was applied to some
test problems, and then the test results were
presented. Chapter 5 summarizes the proposed
solution and the results obtained and presents
possible directions for future research.

2 The classic Levenberg-
Marquardt algorithm

The Levenberg-Marquardt (LM) second-
order algorithm is used to train feed-forward
neural networks. the LM algorithm can adjust
the training speed according to the shape of the
error function. Use the steepest descent meth-
ods as well as the quasi-Newton methods. The
LM algorithm uses the loss function defined by
the following equation:
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In the hidden layers, the neurons non-linear er-
rors ε

(lr)
i are calculated using the following for-

mula:
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Based on that, the elements of the Jacobian ma-
trix can be computed for each weight of the net-
work
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Note that the derivatives (9) are computed in
an analogous way as in the classical error back-
propagation method, with the difference that
only one error is given to the network output
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each time. All weights of the network are stored
in a single vector, and their derivatives create
the Jacobian J matrix.

The S(w(n)) element in equation (5) is de-
fined as

S(w(n)) =
Q∑

t=1

NL∑
r=1

ε(L)
r (t)∇2ε(L)

r (t) . (10)

In the Gauss-Newton method, we can assume
the simplification that S(w(n)) ≈ 0, which
makes the equation (3) takes the following form

∆(w(n)) =
= −

[
JT (w(n))J(w(n))

]−1
JT (w(n))ε(w(n)) .

(11)
The Levenberg-Marquardt algorithm updates
the weights once at the end of each epoch only.
At this point, the entire Jacobian matrix is
already computed by the equations (6), (7),
(8), and (9). In the Levenberg-Marquardt al-
gorithm, otherwise, the Gauss-Newton method
assumes that S(w(n)) = µI. Hence the equa-
tion (3) takes the form

∆(w(n)) =
= −

[
JT (w(n))J(w(n))+ µI

]−1
·

·JT (w(n))ε(w(n)) .

(12)

To determine the value of weights corrections,
the (12) equation will be presented in the ma-
trix form

∆(w(n)) = A(n)−1h(n) , (13)

where the matrices A and h are defined by

A(n) = −
[
JT (w(n))J(w(n))+ µI

]
, (14)

h(n) = JT (w(n))ε(w(n)) . (15)

The resulting equation (13) is solved using QR
decomposition. It is an iterative method for
converting any non-singular matrix to the prod-
uct of the upper triangular matrix R and the
orthogonal matrix Q. The conversion is done
using the following equations

QT (n)A(n)∆(w(n)) = QT (n)h(n) , (16)

R (n)∆(w(n)) = QT (n)h(n) . (17)

Seeing that R is the matrix of the upper trian-
gle, solving the equation (17) is relatively simple
and yields the weight update vector ∆(w(n)).
The QR decomposition is accomplished by us-
ing Givens rotation as shown in [33].

The Levenberg-Marquardt algorithm de-
scribed above can be presented in the following
steps:

1. The calculation of the network outputs, er-
rors, and loss function for all input data from
the training set.

2. The calculation of the whole Jacobian
matrix, using the error backpropagation
method for each output error individually.

3. The calculation of weight changes vector
∆(w(n)) using the QR decomposition.

4. The recalculation of the value of the loss
function (1) for the newly obtained weights
w(n) + ∆(w(n)). If the loss function is less
than that calculated previously in step 1, µ is
divided by β, the weights vector is updated
and the algorithm goes to the next epoch in
step 1. Otherwise, µ is multiplied by β and
the algorithm goes again to step 3 within the
same epoch.

5. Stopping the LM algorithm when the loss
function drops below the preset value or the
gradient drops below the preset value.

3 Fast computational ap-
proach to the Levenberg-
Marquardt algorithm

In practice, the biggest problem of the LM
algorithm is the training time of larger neural
networks resulting from the large size of the Ja-
cobian matrix. This Section presents the idea
and explanation of how to speed up the LM al-
gorithm using vector instructions from modern
processors. A similar result can also be achieved
by using multi-core processors, but in this work,
only one vector core of the processor was used,
which allowed avoiding thread synchronization
and freed up the remaining cores for other tasks.
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Figure 3. Sample illustration for computational steps in LM algorithm.

Figure 4. Sample illustration for calculating method with vector instructions. a) the 4-elements
vector, b) the 8-elements vector

Figure 5. Sample illustration for training process with vector instructions.
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Figure 3 shows the steps of one epoch of the
LM algorithm, you can see the initial two steps
and repeating steps 3 and 4.

The Levenberg-Marquardt algorithm is a
method that requires relatively high computing
power per epoch. Each epoch consists of several
steps (see the previous Section), starting with
two steps 1 and 2, and the next steps 3 and 4
are repeated as many times until the loss func-
tion value is reduced, finally, in the last step,
the end of training criterion is checked.

It is easy to see that the successive pairs
of steps 3 and 4 are independent of each other,
which means that several such pairs of steps can
be performed simultaneously. These pairs have
the same starting point and differ only in the
value of the µ parameter. This means that they
can be run in parallel on different processors or
separate cores of the same processor. However,
this article proposes a solution that uses vec-
tor instructions from modern processors. The
use of vector instructions makes it possible to
execute 4, 8, and even 16 operations in paral-
lel. The use of this approach allows us to de-
termine in parallel the new 4, 8, or 16 points
in the weighing space using only one processor
core, see Figure 4. The LM algorithm using
four-element vectors is shown in Figure 4a.

After completing the first two steps, the
LM algorithm simultaneously carries out steps
3 and 4 for the next 4 (8, 16) µ parameters.
Thus, the three consecutive computations of
steps 3 and 4 are performed earlier in the com-
putation time of the first pair of steps 3 and 4,
therefore they do not consume CPU computing
time. The rectangles with the line in the middle
symbolize steps 3 and 4, which in the standard
calculation method are normally performed se-
quentially, and in the presented approach they
are calculated using vector instructions simul-
taneously with the first pair of steps 3 and 4,
and therefore do not require additional time.
The figure 4b shows the version of the LM al-
gorithm that uses eight element vectors.

An exemplary training process using the LM
algorithm is shown in Figure 5. You can clearly
see that successive epochs have a different num-
ber of repetitions of steps 3 and 4. There are
also epochs where the next repetition does not

occur even once and there are epochs that have
many repetitions, in this case, it is possible
to use vector instructions, which allows you to
calculate up to four pairs of steps 3 and 4 in
parallel and consequently shorten the training
time. Naturally, it is possible to use eight- or
sixteen-element vectors instead of four-element
vectors. This increases the parallelism of calcu-
lations and the speed of the proposed method.
It should also be remembered that by increas-
ing the size of the vector, memory consumption
also increases.

4 Simulation results
In order to test the proposed fast method of

computing the Levenberg-Marquard algorithm,
a test procedure was developed. A detailed de-
scription of this procedure is provided in the 4.1
subsection. The main purpose of the presented
tests is to compare the quick calculation of the
Levenberg-Marquard algorithm with the classi-
cal one. The selected tests cover various com-
mon problems that can be solved by neural net-
works. A set of tests was prepared to cover
the approximation of one- and two-dimensional
functions and various examples of classification.

Various network topologies were also used
during the tests. This includes classic multi-
layer perceptron networks and fully connected
networks. In order to increase the transparency
of the presented results, a consistent nomen-
clature of the network topology was used. A
multi-layer perceptron containing L layers con-
taining nl (l ∈ [1, . . . ,L]) neurons in each of them
is labeled ” MLP[−nl]−L ”. The same network
with additional connections to all previous lay-
ers (not only to the previous one) is additionally
preceded by the tag ”FC”, which means ”Fully
Connected”.

4.1 Test methodology
Practical implementations of neural net-

works and training algorithms contain a number
of parameters that are used to control the learn-
ing process. The values of these parameters are
set before starting the training process. Some
of them work as constant, eg training target,
error criterion, epoch limit, etc. Other parame-
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ters can be modified by the training algorithms
during their operation. In the LM method, µ is
such a variable parameter, it is initialized with
β. Depending on the selected set of parame-
ters, the training may be successful or not. A
uniform methodology was used to prepare sta-
ble and reproducible results for each performed
test.

Several common parameters were used in all
tests. They are listed in the 1 table. In or-
der for the obtained statistical data to be cor-
rect, each test was repeated 100 times. The test
is successful when the network failure criterion
reaches a predefined error threshold (set indi-
vidually for each benchmark). The test fails if
the epoch limit is reached before the criterion is
converged. During each training process, sam-
ple sets are presented randomly. For all training
processes, weights are randomly selected from
[−0.5,0.5].

Table 1. Common experiment parameters.

Max number of epoch 1000
Number of experiment 100
Sequence of samples Random
Starting weights range [−0.5,0.5]
The β factor 4

The tables presented in the following sub-
sections contain the average training times for
100 repetitions expressed in milliseconds [ms]
for 100 repetitions for the classical method of
calculating the LM algorithm and the proposed
vector method for 4-, 8- and 16-element vec-
tors, which was marked as LMP4, LMP8, and
LMP16 respectively. The ”AF” acceleration
factor expressed as a percentage [%] shows how
much the training time has been shortened for
a given case. The acceleration factor is given
by the formula

AF =
(

1− LMPx

LM

)
∗100% (18)

The tests were performed for two network
topologies, the MLP and the FCMLP.

4.2 Approximation
Approximation tests are intended to sim-

ulate the f relation between the sets X and

Y , which is formally formulated as f : X → Y.
Classically, such a relation is the f function,
which can be written in a formula and imple-
mented as a computer function. Unfortunately,
in some complicated cases, it may be very diffi-
cult or impossible to give an unambiguous rela-
tionship between these sets. Given the set of X
system inputs and Y of known and correspond-
ing outputs, a training sequence for a neural
network can be created that can map the set X
to the set Y . In the following subsections, var-
ious methods of computing the LM algorithm
are used to simulate the responses of selected
nonlinear functions.

4.2.1 The logistic function

The unary logistic function is represented
by the formula

f (x) = 4x(1−x) x ∈ [0,1]. (19)

The training set contains 11 samples for func-
tion arguments in the range x ∈ [0,1]. The test
initial parameters are listed in Table 2.

Table 2. Initial parameters for the logistic
function training.

Expected error 0.001
Criterion Epoch average
Activation in Hyperbolic tangenthidden layers
Training set size 11

The simulation results for the two types of
neural networks MLP and FCMLP are pre-
sented in the Table 3. Both networks have
two layers with five neurons in the hidden
layer. The designations LM, LMP4, LMP8,
and LMP16 correspond to the average network
training time using the LM algorithm and its
three vector versions for 4, 8, and 16-element
vectors, respectively.
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Table 3. Training results for the LOG
function.

Network MLP FCMLP
1-5-1 1-5-1

LM [ms] 0.880 0.588
LMP4 [ms] 0.440 0.311
AF [%] 50.0 47.1
LMP8 [ms] 0.434 0.306
AF [%] 50.7 48.1
LMP16 [ms] 0.433 0.305
AF [%] 50.8 48.1

It is easy to see that the FCMLP network in
all cases takes less time to be properly trained
than the MLP network. Moreover, the acceler-
ation coefficients have similar values, improving
slightly with increasing vector size.

4.2.2 The composite function

In this test the following unary composite
function is trained

y =
{

−cos(x)
−cos(3x)

for x ∈ ⟨0,π⟩
for x ∈ (π,2π⟩ (20)

The training set contains 23 samples for func-
tion arguments in the range x ∈ [0,2π]. The test
initial parameters are listed in Table 4.

Table 4. Initial parameters for the composite
function training.

Expected error 0.01
Criterion Epoch average
Activation in Hyperbolic tangenthidden layers
Training set size 23

The simulation results are presented in the
Table 5. Both networks MLP and FCMLP have
two layers with ten neurons in the hidden layer.

Table 5. Training results for the composite
function.

Network MLP FCMLP
1-10-1 1-10-1

LM [ms] 83.791 80.128
LMP4 [ms] 43.411 40.839
AF [%] 48.2 49.0
LMP8 [ms] 41.627 39.813
AF [%] 50.3 50.3
LMP16 [ms] 41.606 39.809
AF [%] 50.3 50.3

The obtained acceleration factors are close
to those obtained for the logistic function.

4.2.3 The two-argument Hang function

The Hang function is a nonlinear two-
dimensional function with the following formula

f (x1,x2) =
(

1+x−2
1 +

√
x−3

2

)2
x1,x2 ∈ [1,5].

(21)
In this test, the training set contains 50 sam-
ples which are in the range x1,x2 ∈ [1,5]. The
Hang test initial parameters are shown in the
Table 6.

Table 6. Initial parameters for the Hang
function training.

Expected error 0.001
Criterion Epoch average
Activation in Hyperbolic tangenthidden layers
Training set size 50

The two-argument Hang function does a
fairly complex nonlinear argument mapping.
To properly handle this case, networks must be
extended to 15 neurons in the hidden layer. The
training results are presented in the table 7.
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Table 7. Training results for the Hang
function.

Network MLP FCMLP
2-15-1 2-15-1

LM [ms] 27.235 34.237
LMP4 [ms] 13.191 16.691
AF [%] 51.6 51.2
LMP8 [ms] 12.553 16.165
AF [%] 53.9 51.2
LMP16 [ms] 12.462 16.111
AF [%] 54.2 52.9

The two-argument Hang test turns out to
be much more demanding than the unary func-
tions. Nevertheless, the acceleration factors ob-
tained are slightly higher.

4.2.4 The two-argument Sinc function

The two-argument Sinc function is two sine
functions composition. The Sinc function takes
the following form

y = f (x1,x2) =

=




1 x1 = x2 = 0
sinx2

x2
x1 = 0∧x2 ̸= 0

sinx1
x1

x2 = 0∧x1 ̸= 0
sinx1

x1
sinx2

x2
in other cases.

(22)

The Sinc training set has 121 samples for the
arguments in the range of x1,x2 ∈ [−10,10].
The Sinc test initial parameters are listed in
the Table 8.

Table 8. Initial parameters for the Sinc
function training.

Expected error 0.005
Criterion Epoch average
Activation in Hyperbolic tangenthidden layers
Training set size 121

Table 9. Training results for the Sinc
function.

Network MLP FCMLP
2-15-1 2-15-1

LM [ms] 53.627 70.685
LMP4 [ms] 25.753 34.208
AF [%] 52.0 51.6
LMP8 [ms] 24.872 33.424
AF [%] 53.6 52.7
LMP16 [ms] 24.776 33.383
AF [%] 53.8 52.8

Like the Hang function, the Sinc function also
performs a fairly complex mapping of its argu-
ments. The same networks are used in this test
as for the Hang function, but the training set is
more than twice as large. The training results
are presented in table 9.

In the two-argument Sinc test, the obtained
acceleration factors are in the range of 51.6 –
53.8%.

4.3 Classification
The purpose of the classification tests is to

find the h classifier that will assign the y ∈ Y
class to the x ∈ X input for a given dataset
{(x1,y) , . . . ,(xn,y)}. Formally, such a relation-
ship is presented as h : X → Y. A neural net-
work can be trained to classify data based on its
similarity and common patterns, the so-called
features with the help of an appropriate train-
ing set. Some examples of classification are pre-
sented in the following Sections.

4.3.1 The IRIS classification

In this test, the training set contains 150
samples describing three varieties of iris flow-
ers. The iris flowers are identified with four
attributes describing the lengths and widths of
the flower petals. The IRIS test initial param-
eters are shown in the Table 10.

Table 10. Initial parameters for the IRIS test
training.

Expected error 0.05
Criterion Epoch average
Activation in Hyperbolic tangenthidden layers
Training set size 150
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In this case, neural networks with four in-
puts, three outputs, and two hidden layers, six
neurons each, were used. The training results
are presented in Table 11.

Table 11. Training results for the IRIS test.

Network MLP FCMLP
4-6-6-3 4-6-6-3

LM [ms] 528.183 1851.720
LMP4 [ms] 242.789 870.468
AF [%] 54.0 53.0
LMP8 [ms] 229.337 842.894
AF [%] 56.6 54.5
LMP16 [ms] 223.374 831.464
AF [%] 57.7 55.1

In this case, acceleration factors of 57.7%
were obtained.

4.3.2 The Two Spirals classification

Two spirals is a well-known classification
problem in which a neural network has to
choose which of the two spirals a given point
belongs to based on its two-dimensional coor-
dinates. The training set contains 96 samples.
The two spiral test initial parameters are shown
in the Table 12.

Table 12. Initial parameters for the two
spirals problem training.

Expected error 0.05
Criterion Epoch average
Activation in Hyperbolic tangenthidden layers
Training set size 96

For two spiral problem, neural networks with
two inputs, one output, and three hidden layers,
five neurons each, were used. Table 13 shows
the simulation results.

Table 13. Training results for the two spirals
problem.

Network MLP FCMLP
2-5-5-5-1 2-5-5-5-1

LM [ms] 166.819 349.704
LMP4 [ms] 77.954 165.037
AF [%] 53.3 52.8
LMP8 [ms] 76.139 161.613
AF [%] 54.4 53.8
LMP16 [ms] 75.555 161.192
AF [%] 54.7 53.9

In the two spirals problem, the obtained
acceleration factors are in the range of 52.8 –
54.7%.

4.3.3 The Heart disease classification

The heart disease database contains 75 in-
put attributes, but only a subset of 13 is used in
all published experiments. The goal of training
is to find out if you have heart disease. The net-
work output is an integer with the value 0 (no
disease present) or 1,2,3,4 (disease presence).
The training set contains 303 samples. The
heart disease test initial parameters are pre-
sented in the Table 14.

Table 14. Initial parameters for the heart
disease test.

Expected error 0.01
Criterion Epoch average
Activation in Hyperbolic tangenthidden layers
Training set size 303

For the heart disease test, neural networks with
thirteen inputs, one output, and two hidden lay-
ers, nine neurons each, were used. Table 15
shows the simulation results.
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Table 15. Training results for the heart
disease test.

Network MLP FCMLP
13-9-9-1 13-9-9-1

LM [ms] 2661.37 13190.50
LMP4 [ms] 1244.88 6558.12
AF [%] 53.2 50.3
LMP8 [ms] 1178.10 6343.68
AF [%] 55.7 51.9
LMP16 [ms] 1160.57 6327.90
AF [%] 56.4 52.0

In the heart disease test, the obtained accel-
eration factors are in the range of 50.3 – 56.4%.

4.4 Other Trained Problems
Three other additional tests from various

fields will be presented here: determining the
age of the abalone sea snail based on its physi-
cal characteristics, determining the strength of
concrete from its physical parameters, and de-
termining the crane power control.

4.4.1 The Abalone age

In this experiment, neural networks are
trained to determine the age of a sea snail called
abalone based on its eight physical properties.
All samples have been normalized to the range
[−1,1]. The Abalone test contains 4177 sam-
ples, each with 8 inputs and one output. The
Abalone test initial parameters are shown in the
Table 16.

Table 16. Initial parameters for the abalone
age training.

Expected error 0.012
Criterion Epoch average
Activation in Hyperbolic tangenthidden layers
Training set size 4177

Table 17. Training results for the abalone age
test.

Network MLP FCMLP
8-6-6-1 8-6-6-1

LM [ms] 6187.58 8681.53
LMP4 [ms] 2895.08 4087.72
AF [%] 53.2 52.9
LMP8 [ms] 2752.73 3881.05
AF [%] 55.5 55.3
LMP16 [ms] 2725.98 3867.87
AF [%] 55.9 55.4

For the Abalone age test, neural networks with
eight inputs, one output, and two hidden layers,
six neurons each, were used. Table 17 presents
the simulation results.

In the abalone age test, the obtained accel-
eration factors are in the range of 52.9 – 55.9%.

4.4.2 The Concrete test

In this experiment, based on its eight physi-
cal properties, neural networks are trained to
determine the concrete compressive strength
based on its age and ingredients. All samples
have been normalized to the range [−1,1]. The
concrete test contains 1030 samples, each with
8 inputs and one output. The Concrete test
initial parameters are shown in the Table 18.

Table 18. Initial parameters for the concrete
training.

Expected error 0.01
Criterion Epoch average
Activation in Hyperbolic tangenthidden layers
Training set size 1030
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Table 19. Training results for the concrete
test.

Network MLP FCMLP
8-6-6-1 8-6-6-1

LM [ms] 5017.19 1842.99
LMP4 [ms] 2453.76 869.342
AF [%] 51.1 52.8
LMP8 [ms] 2421.89 828.089
AF [%] 51.7 55.1
LMP16 [ms] 2418.00 825.561
AF [%] 51.8 55.2

For the concrete test, neural networks with
eight inputs, one output, and two hidden layers,
six neurons each, were used. Table 19 presents
the simulation results.

In the concrete test, the acceleration factors
are in the range of 51.1 – 55.2%.

4.4.3 The Container Crane Controller
test

The container crane controller data set has
two input attributes (speed and angle) and one
output attribute (power). It contains 15 sam-
ples. All samples have been normalized to the
range [−1,1]. The container crane controller
test initial parameters are listed in the Table 20.

Table 20. Initial parameters for the container
crane controller training.

Expected error 0.001
Criterion Epoch average
Activation in Hyperbolic tangenthidden layers
Training set size 15

Table 21. Training results for the container
crane controller test.

Network MLP FCMLP
8-6-6-1 8-6-6-1

LM [ms] 6.785 6.557
LMP4 [ms] 3.368 3.284
AF [%] 50.3 49.9
LMP8 [ms] 3.342 3.258
AF [%] 50.7 50.3
LMP16 [ms] 3.336 3.257
AF [%] 50.8 50.3

For this test, neural networks with two inputs,
one output, and one hidden layer with ten neu-
rons, were used. Table 21 presents the simula-
tion results.

In the performed test, the acceleration fac-
tors were obtained in the range of 49.9 - 50.8

5 Conclusion
The vector approach to computation using

the Levenberg-Marquardt algorithm was devel-
oped to increase its efficiency. The proposed
optimization allows for parallelization of calcu-
lations for repeating steps in the classic LM
algorithm. It is possible thanks to the use of
vector calculations, which can be implemented
in modern processors by SIMD (Single Instruc-
tion Multiple Data) instructions. The opera-
tions in several successive steps are completely
independent of each other, so they can be per-
formed in parallel. The growing possibilities
of multiprocessor devices in the field of vec-
tor instructions are becoming a natural stim-
ulus for the evolution of training algorithms
towards their parallelization, as originally pro-
posed in [34, 35, 36, 37, 38, 39, 40].

The presented experiment contains a total
of 10 different test problems including 4 approx-
imations of functions, 3 classification cases, and
3 other examples. The analyzed tests had data
sets of various sizes. The size of the network
and the number of inputs and outputs also dif-
fered. The overall success rate and the num-
ber of epochs needed to train the network did
not depend on the calculation method, but only
on the selected problem and network topology.
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The training time for the vector approach is
much shorter, and the acceleration factor is in
the range of 47.1-57.7%.

In our research, three sizes of vectors were
used: 4, 8, and 16. These vectors were imple-
mented using the AVX (Advanced Vector eX-
tension) and AVX-512 instructions. As might
be expected, the longer the vectors were, the
greater the acceleration factor. However, for
the tested problems, the differences in the ac-
celeration coefficients were relatively small 0.4-
3.7% only. Thus, it seems sufficient to use four-
element vectors, the more so that as the number
of elements in the vector increases, the mem-
ory occupancy also increases, but with the cur-
rent memory size, this is usually not a prob-
lem. It is also worth noting that the proposed
solution can be implemented without vector in-
structions, instead using multi-core processors.
However, in this case, the thread synchronisa-
tion become necessary. The top highlights dis-
cussed in this article for the vector approach to
computing the LM algorithm can be summa-
rized as follows:

1. The implementation difficulty for the vector
approach is similar to the classical imple-
mentation of the Levenberg-Marquardt al-
gorithm.

2. The obtained results show that the proposed
solution causes on average more than two
times shorter training time compared to the
classic LM algorithm.

3. Obtaining such a significant reduction in the
training time of the LM algorithm results
from the parallel execution of the next steps
of the algorithm before they are required.

4. The success rate and the number of epochs
needed to train the network are identical to
the classical calculation method.

5. A vector approach to the LM algorithm can
be replaced with a parallel implementation
on multiple processor cores, but then re-
quires the use of synchronization techniques.

In our future work, we plan to apply our vec-
tor approach to other neural network training
algorithms, e.g. [9, 10, 11].
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