PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Photodynamic therapy of melanoma. Monte Carlo modeling of light transport in human pigmented skin

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among many available methods used in clinical practice to treat cancer tissues, Photodynamic therapy (PDT) is a relatively new tool. PDT is an enhancement of chemotherapy. To destroy cancerous tissue, photosensitizer (PS), oxygen (O2) and light - three crucial elements of PDT - have to work together to produce sufficiently high concentration of cytotoxic reagents, reactive species of oxygen (ROS), mainly singlet oxygen 1O2. To effectively generate 1O2, light intensity needed for the activation PS should achieve appropriate value in the place of the location of PS within the cancerous lesion. In pigmented cancers amount of melanin is larger than in normal tissues due to proliferation of melanoma cells. Melanin strongly absorbs light and attenuates its intensity. To investigate the influence of melanin on PDT efficiency, a seven-layer computer skin model was proposed and tentatively examined in this work. Influence of melanin on light intensity distribution was simulated with Monte Carlo method. For some fluence rate values (50,100,150 and 200 mWcm-2) the computer simulations of PDT effect using parameters of porphyrin photosensitizer (tritiolyloporphyrin, λex=650 nm) and kinetic schema of PDT based on Jablonski diagram were analyzed. Simulations have shown that fluence rate values strongly modify efficiency of therapy and in the case of low fluence rate values deeper laying cancerous cell would not be killed due to too low 1O2 production. Additionally it was shown that the problem of estimation of melanin content in tissue can be solved by measurement of diffuse reflectance of skin. The possibilities of further development of the model were also briefly discussed.
Słowa kluczowe
Rocznik
Strony
85--93
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
autor
  • Department of Medical Physics and Biophysics Faculty of Physics and Applied Computer Sciences, AGH-University of Science and Technology Al. Mickiewicza 30, 30-059 Cracow
Bibliografia
  • 1. Bajcar S., Grzegorczyk L.: Atlas of skin pigmented lesions., Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, 2000 (in polish).
  • 2. Morton C.A. and MacKie R.M.: Clinical accuracy of the diagnosis of cutaneous malignant melanoma. Br. J. Dermatol. 1998, 138: 283-287.
  • 3. Abbasi N.R, Shaw H.M., Rigel D.S., Friedman R.J., McCarthy W.H., Osman I., Kopf A.W., Polsky D.: Early diagnosis of cutaneous melanoma: Revisiting the ABCD criteria. JAMA 2004, 292: 2771-2776.
  • 4. Ochsner M.: Photophysical and photobiological processes in the photodynamic therapy. J. Photochem. Photobiol. B.: Biol. 1997, 39: 1-18.
  • 5. Young A.R.: Chromophores in human skin. Phys. Med. Biol. 1997, 42: 789–802.
  • 6. Urbańska K., Romanowska-Dixon B., Matuszak Z., Oszajca J., Nowak-Śliwińska P., Stochel G.: Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta Biochim. Polon. 2002, 49: 387-391.
  • 7. Kukielczak B., Cieszka K.A., Matuszak Z.T., Subczynski W.K.: Experimental Photodynamic Therapy (PDT) of Bomirski Hamster Melanoma using Merocyjanine 540 and Visible Light Part I. Pigmented (ma) line. Curr. Topics in Biophys.1995, 19: 66-70.
  • 8. Drzewiecka A., Urbanska K. Matuszak Z., Pineiro M., Arnaut L.G., Habdas J., Ratuszna A. and Stochel G.: Tritolylporphyrin dimer as a new potent hydrophobic sensitizer for photodynamic therapy of melanoma. Acta Biochim. Polon. 2001, 48:, 277-282.
  • 9. Liu L.H.S, Ni C.: Hematoporphyrin phototherapy for experimental intraocular malignant melanoma. Arch. Ophthalmol. 1983, 101: 901-903.
  • 10. Gonzalez V.H., Hu L.K., Panagiotis G. Theodossiadis P.G, Flotte T.J., Evangelos S. Gragoudas E.S. and. Young L.H.Y.: Photodynamic Therapy of Pigmented Choroidal Melanomas. Invest. Ophthalmol & Visual Sci. 1995, 36: 871-878.
  • 11. Jacques S. L.: Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues. Photochem. Photobiol. 1998, 67: 23-32.
  • 12. Axelsson J., Swartling J., Andersson-Engels S.: In vivo photosensitizer tomography inside the human prostate. Optics Letters 2009, 34: 232–234.
  • 13. Foster T., Murant R., Bryant R., Knox R., Gibson S., and Hilf R.: Oxygen consumption and diffusion effects in photodynamic therapy. Radiation Research 1991, 126: 296–303.
  • 14. Chandrasekhar S.: Radiative Transfer. Dover Publications, June 1960.
  • 15. Niedre M.J., Secord A.J., Patterson M.S., Wilson B.C.: In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy. Cancer Res. 2003, 63: 7986-7994.
  • 16. Mishchenko M.I., Travis L.D., and Lacis A.A.: Scattering, absorption, and emission of light by small particles. Cambridge University Press 2002.
  • 17. Sobol I.M.: Monte Carlo Metho. Nauka, Moscow 1985.
  • 18. Lakowicz J.R.: Principles of Fluorescence Spectroscopy, Sec. Ed., Kluwer Acad./Plenum Publ., New York, 1999.
  • 19. Hu X.H., Feng Y., Lu J.Q., Allison R.R., Cuenca R.E., Downie G.H., Sibata C.H.: Modeling of a Type II Photofrin-mediated Photodynamic Therapy Process in a Heterogeneous Tissue Phantom. Photochem. Photobiol. 2005, 81: 1460-1468.
  • 20. Hoops S., Sahle S., Gauges R., Lee C., Pahle J., Simus N., Singhal M., Xu L., Mendes P., Kummer U.: COPASI — a COmplex PAthway SImulator. Bioinformatic. 2006, 22: 3067-3074.
  • 21. Tuchin V.V.:Light scattering study of tissue. Physics Uspekhi 1997, 40: 495-515.
  • 22. Cheong W.-F., Prahl S.A., Welch A.J.: A review of the optical properties of biological tissues. IEEE J. Quant. Electron. 1990, 26: 2166–2185.
  • 23. Jacques S.L.: Skin optics. Oregon Medical Laser Center News, http://omlc.ogi.edu/news/jan98/skinoptics.html., January 1998.
  • 24. Gemert Van M.J.C., Jacques S.L., Sterenborg H.J.C.M., Star W.M.: Skin Optics. IEEE Trans. Biomed. Engn. 1989, 36: 1146-1954.
  • 25. Anderson R., and Parrish J.: The optics of human skin. J. Invest.Dermatol. 1981, 77: 1-19.
  • 26. Thody A., Higgins E., Wakamatsu K., Ito S., Burchill S., Marks J.: Pheomelanin as well as eumelanin is present in human dermis. J. Invest. Dermatol. 1991, 97: 340-344.
  • 27. Megielinsky I.V., Matcher S.J.: Modelling the sampling volume for skin blood oxygenation. Med. Biol. Engin. Comp. 2001, 39: 44-49.
  • 28. Meglinsky I.V., Matcher S.J.: Computer simulation of the skin reflectance spectra., Comp. Meth. Prog. Biomed. 2003, 70: 179-186.
  • 29. Patwardhan S.V., Dhavan A.P., Relue P.A.: Monte Carlo Simulation of Light-Tissue Interaction: Three-Dimensional Simulation for Trans-Illumination-Based Imaging of Skin Lesions, IEEE Trans.Biomed.Engn. 2005, 52: 1227-1236.
  • 30. Meglinsky I.V. and Matcher S.J.: Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared regions. Physiol. Mesur. 2002, 23: 741-753.
  • 31. Wang L.H, Jacques S.L., Zheng L.Q.: MCML – Monte Carlo modeling of light transportation in multi-layered tissues., Comp. Methods. Prog. Biomed., 47: 131-146,1995.
  • 32. Wang L.H., Jacques S.L., Zheng L.Q.: CONV- convolution for responses to a finite diameter photon beam incident on multilayered tissues. Comp Methods. Prog. Biomed. 1997, 54: 141-150.
  • 33. Zilberstein J., Schreiber S., Bloemers M.C.W.M., Bendel P., Neeman M., Schechtman E., Kohen F., Scherz A., Salomon Y.: Antivascular Treatment of Solid Melanoma Tumors with Bacteriochlorophyll–serine-based Photodynamic Therap. Photochem. Photobiol. 2001, 73: 257-266.
  • 34. Gonzalez V.H., Hu L.K., Panagiotis G. Theodossiadis P.G, Flotte T.J., Evangelos S. Gragoudas E.S. Young L.H.Y.: Photodynamic Therapy of Pigmented Choroidal Melanomas, Invest. Ophthalmol. & Visual Sci., 36: 871-878, 1995.
  • 35. Bergh van den H., Ballini J.-P.: Principles of PDT. In: PDT of Ocular Diseases, Gragoudas E.S., Miller J.W., Zografos L. (eds), Lippincott Williams &Wilkin. 2004.
  • 36. Matuszak Z., Wasilewska-Radwanska M., Buchala J.: The optical properties of some model systems containing melanin, 80 lat Akademii Górniczo-Hutniczej. Proceedings of the Conference. Physics and its Applications 1999, pp. 61-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-419c0605-928b-4fb4-8deb-5f8f933d602c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.