PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Molecular docking, theoretical calculations, synthesis of Ru(III), Pd(II) and VO(II) complexes and activity determination as antibacterial and antioxidant

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Molecular modeling calculations were used to validate 3D structures of new complexes of Ru(III), Pd(II) and VO(II) ions chelated with (E)-2-(phenylamino)-N-(pyridine-2-yl)methylene)acetohydrazide ligand. Furthermore, the calculations were used to estimate selected electronic chemical descriptors which are responsible for the biological activity. The first insight of the compound activity as antibacterial was evaluated by molecular docking analysis. The titled models showed stable binding towards lanosterol 14 alpha-demethylase (CYP51) enzyme of E. coli, indicating their inhibition effect toward bacterial growth. Structural study of the ligand and Ru(III), Pd(II) and VO(II) chelates was done using elemental analysis, FT-IR, 1H-NMR techniques. Furthermore, complexes were physically investigated based on magnetic moment, molar conductance, electronic spectroscopic and thermal analysis techniques. The antibacterial study of the synthesized compounds screened against both Gram-positive and Gram-negative bacteria revealed that these compounds display remarkable antibacterial activity and can be used as therapeutic drugs for pathogenic bacterial diseases. All complexes and ligand showed good scavenging activities which indicate a promising result for their applications as antioxidants.
Rocznik
Strony
29--38
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wz.
Twórcy
autor
  • Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City
  • Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City
  • Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City
  • Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City
  • Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
Bibliografia
  • 1. Yaul, A.R., Dhande, V.V., Pethe, G.B. & Aswar, A.S. (2014). Synthesis, characterization, biological and electrical conductivity studies of some Schiff base metal complexes. Bull. Chem. Soc. Ethiop. 28, 255. DOI: 10.4314/bcse.v28i2.9.
  • 2. Shelke, V.A., Jadhav, S.M., Shankarwar, S.G., Munde, A.S. & Chondhekar, T.K. (2011). Synthesis, characterization, antibacterial and antifungal studies of some transition and rare earth metal complexes of N-benzylidene-2-hydroxybenzohydrazide. Bull. Chem. Soc. Ethiop. 25, 381. DOI: 10.4314/bcse.v25i3.68590.
  • 3. Altntop, M.D., Özdemir, A., Turan-Zitouni, G., Ilgin, S., Atli, Ö., Işcan, G. & Kaplancikli, Z.A. (2012). Synthesis and biological evaluation of some hydrazone derivatives as new anticandidal and anticancer agents. Eur. J. Med. Chem. 58, 299. DOI: 10.1016/j.ejmech.2012.10.011.
  • 4. Xu, J., Zhou, T., Xu, Z., Gu, X., Wu, W., Chen, H., Wang, Y., Wang, L. Zhu, T. & Chen, R.H. (2017). Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand. J. Mol. Struct. 1128, 448. DOI: 10.1016/j.molstruc.2016.09.016.
  • 5. Netalkar, P.P., Netalkar, S.P., Budagumpi, S. & Revankar. V.K. (2014). Synthesis, crystal structures and characterization of late first row transition metal complexes derived from benzothiazole core: Anti-tuberculosis activity and special emphasis on DNA binding and cleavage property. Eur. J. Med. Chem. 2014, 79, 47. DOI: 10.1016/j.ejmech.2014.03.083.
  • 6. Gökçe, M., Utku, S. & Küpeli, E. (2009). Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-substituted/nonsubstituted benzal) hydrazine derivatives. Eur. J. Med. Chem. 44, 3760. DOI: 10.1016/j.ejmech.2009.04.048.
  • 7. Kaushik, D., Khan, S.A., Chawla, G. & Kumar, S. (2010). N’-[(5-chloro-3-methyl-1-phenyl-Hpyrazol- 4-yl)methylene] 2/4-substituted hydrazides: Synthesis and anticonvulsant activity. Eur. J. Med. Chem. 45, 3943. DOI: 10.1016/j.ejmech.2010.05.049.
  • 8. Bolos, C.A., Nikolov, G.S., Ekateriniadour, L., Kortsaris, A. & Kyriakidis, D.A. (1998). Structure- Activity Relationships for Some Diamine, Triamine and Schiff Base Derivatives and their Copper(II) Complexes. Metal Based Drugs. 5, 323.
  • 9. Osowole, A.A. & Festus, C. (2013). Synthesis, characterisation and antibacterial activities of some metal(II) complexes of 3-(-1-(2-pyrimidinylimino)methyl -2-napthol. Elixir Appl. Chem. 59, 15843.
  • 10. Sharma, N.K., Ameta, R.K. & Singh, M. (2016). Biological Impact of Pd (II) Complexes: Synthesis, Spectral Characterization, In Vitro Anticancer, CT-DNA Binding, and Antioxidant Activities. Inter. J. Med. Chem. ID 9245619. DOI: 10.1155/2016/9245619.
  • 11. Shakdofa, M.E., Al-Hakimi, A.N., Elsaied, F.A., Alasbahi, S.O. & Alkwlini, A.M., (2017). Synthesis, Characterization and bioactivity Zn2+, Cu2+, Ni2+, Co2+, Mn2+, Fe3+, Ru3+, VO2+ and UO2 2+ complexes of 2-Hydroxy-5-((4-nitrophenyl) diazenyl) Benzylidene)-2-(p-tolylamino)acetohydrazide. Bull. Chem. Soc. Ethiop, 31, 75. DOI: 10.4314/bcse.v31i1.7.
  • 12. Al-Hazm, G.A., Abou-Melha, K.S., Althagafi, I., El-Metwaly, N., Shaaban, F., Abdul Galil, M.S., Mansour, S., Abdul Galil, A. & El-Bindar, A. (2020).Synthesis and structural characterization of oxovanadium(IV) complexes of dimedone derivatives. Appl. Organomet. Chem., 34, e5672. DOI: 10.1002/aoc.5672.
  • 13. El-Gammal, O.A., Mohamed, F.Sh., Rezk, G.N. & El--Bindar, A. (2021). Synthesis, characterization, catalytic, DNA binding and antibacterial activities of Co(II), Ni(II) and Cu(II) complexes with new Schiff base ligand. Mol. Liq. 326, 115223. DOI: https://doi.org/10.1016/j.molliq.2020.115223.
  • 14. El-Saied, F.A., Salem, T.A., Aly, S.A. & Shakdofa, M.M.E. (2017) Evaluation of hyperglycemic effect of synthetic Schiff base vanadium(IV) complexes. Pharm. Chem. J. 51, 833. DOI: 10.1007/s11094-017-1702-4.
  • 15. Bassett, J., Denney, R.C., Jeffery, G.H. & Mendham, J. Vogel’s Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th edition, Longman Group, London. 1978, 316.
  • 16. Monteiro, N.K. & Firme, C.L. (2015). Teaching Thermodynamic, Geometric and Electronic Aspects of Diels-Alder Cycloadditions by Using Computational Chemistry – An Undergraduate Experiment. World J. Chem. Educat. 3, 141. DOI: 10.12691/wjce-3-6-3.
  • 17. Hay, P.J. & Wadt, W.R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 270. DOI: 10.1063/1.448975.
  • 18. Dennington, R., Keith, T. & Millam, J. Gauss view version 5, Semichem Inc. 2009.
  • 19. Ismael, M., Abdel-Mawgoud, A.A.M., Rabia, M.K. & Abdou, A. (2021). Ni(II) mixed-ligand chelates based on 2-hydroxy-1-naphthaldehyde as antimicrobial agents: Synthesis, characterization, and molecular modeling. J. Mol. Liq. 330, 115611. DOI: 10.1016/j.molliq.2021.115611.
  • 20. Aly, S.A. & Fathalla, S.K. (2020). Preparation, characterization of some transition metal complexes of hydrazone derivatives and their antibacterial and antioxidant activities. Arbian J. Chem. 13, 3735. DOI: 10.1016/j.arabjc.2019.12.003.
  • 21. Blois, M.S. (1958). Antioxidant determinations by the use of a stable Free radical. Nature. 181, 1199. DOI: 10.1038/1811199a0.
  • 22. Glucin, I. (2006). Antioxidant and antiradical activities of L-carnitineX. Life Sci. 78(8), 803. DOI: 10.1016/j.lfs.2005.05.103.
  • 23. Glucin, I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicol. 217, 213. DOI: 10.1016/j.tox.2005.09.011.
  • 24. Ak, T. & Glucin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174, 27. DOI: 10.1016/j.cbi.2008.05.003.
  • 25. Geary, W.J., (1971). The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds. Coord. Chem. Rev. 7, 81–122. DOI: 10.1016/S0010-8545(00)80009-0.
  • 26. Dhanaraj, C.J. & Johnson, J. (2017). DNA interaction, antioxidant and in vitro cytotoxic activities of some mononuclear metal(II) complexes of a bishydrazone ligand. Mater. Sci. Eng. C. 78, 1006. DOI: 10.1016/j.msec.2017.04.152.
  • 27. Al-Ashqer, S., Abou-Melha, K.S., Al-Hazmi, G.A., Saad, F.A. & El-Metwaly, N.M. (2014). Spectral studies on a series of metal ion complexes derived from pyrimidine nucleus, TEM, biological and γ-irradiation effect. Spectrochim. Acta, Part A. 132, 751. DOI: 10.1016/j.saa.2014.05.084.
  • 28. Aly, S.A. (2017). Spectrochemical study the effect of high energetic ionization radiation on Ru(III), Pd(II) and Hg(II) complexes. J. Radiat. Res. Appl. Sci. 10, 89. DOI: 10.1016/j. jrras.2016.12.001.
  • 29. El-Boraey, H.A. & Serag El-Din, A.A. (2014). Transition metal complexes of a new 15-membered [N5] pentaazamacrocyclic ligand with their spectral and anticancer studies. Spectrochim. Acta A. 132, 663. DOI: 10.1016/j.saa.2014.05.018.
  • 30. Venkatachalam, G. & Ramesh, R. (2006). Ruthenium(III) bis-bidentate Schiff base complexes mediated transfer hydrogenation of imines. Inorg. Chem. Commun, 9, 703. DOI: 10.1016/j.inoche.2006.04.012.
  • 31. El-Boraey, H.A. (2012). Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity. Spectrochim. Acta A, 97, 255. DOI: 10.1016/j.saa.2012.05.077.
  • 32. Geeta, B., Shravankumar, K., Muralidhar, P., Ravikrishna, E.E. Sarangapani, E., Krishna, K. & Ravinder, V. (2010). Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity. Spectrochim. Acta A, 77, 911. DOI: 10.1016/j.saa.2010.08.004.
  • 33. Al-Ahmary, K.M., Soliman, S.M., Mekheimer, R.A., Habeeb, M.M. & Alenezi, M.S. (2017). Synthesis, spectral studies and DFT computational analysis of hydrogen bonded-charge transfer complex between chloranilic acid with 2,4-diamino--quinoline-3-carbonitrile in different polar solvents. J. Mol. Liq., 231, 602.
  • 34. Ismael, M., Abdel-Mawgoud, A.M., Rabia, M.K. & Abdou, A. (2021). Synthesis, characterization, molecular modeling and preliminary biochemical evaluation of new copper(II) mixed-ligand complexes. J. Mol. Str., 1227, 129695.
  • 35. Prasad, K.S., Kumar, L.S., Revanasiddappa, H.D., Vijay, B. & Jayalakshmi, B. (2011). Oxovanadium Complexes with Bidentate N, O Ligands: Synthesis, Characterization, DNA Binding, Nuclease Activity and Antimicrobial Studies Chem. Sci. J., 28, 2011. https://astonjournals.Com/csj.
  • 36. El-Boraey, H.A., El-Salamony, M.A. & Hathout, A.A. (2016). Macrocyclic [N5] transition metal complexes: synthesis, characterization and biological activities. J. Incl. Phenom. Macrocycl. Chem., 86, 153. DOI: 10.1007/s108047-016-0649-5
  • 37. El-Boraey, H.A. & El-Salamony, M.A. (2019). Transition Metal Complexes with Polydentate Ligand: Synthesis, Characterization, 3D Molecular Modelling, Anticancer, Antioxidant and Antibacterial Evaluation. J. Inorg.Organomet. Poly. Mat. 29, 684. DOI: 10.1007/s10904-018-1042-1
  • 38. Lang, P.T., Moustakas, D., Brozell, S., Carrascal, N., Mukherjee, S., Pegg, S., Raha, K., Shivakumar, D. & Rizzo, R. (2015). D.J.T.O.U.D.W.-S.F. Case, DOCK 6.0 Users Manual.
  • 39. Strushkevich, N., Usanov, S.A. & Park, H.W. (2010). Structural Basis of Human CYP51 Inhibition by Antifungal Azoles. J. Mol. Biology, 397, 1067. DOI: 10.1016/j.jmb.2010.01.075.
  • 40. Sebastian, S., Schreiber, S., Haupt, V., Adasme, M. and Schroeder, M. (2015). PLIP: fully automated protein–ligand interaction profiler Nucleic Acids Research, 43, W443. DOI: 10.1093/nar/gkv315.
  • 41. Balachandran, C., Kumar, P.S., Arun, Y., Duraipandiyan, V., Sundaram, R.L., Vijayakumar, A., Balakrishna, K., Ignacimuthu, S., Al-Dhabi, N. & Perumal, P.T. (2015). Antimicrobial, antioxidant, cytotoxic and molecular docking properties of N--benzyl-2,2,2-trifluoroacetamide. Appl. Nanosc., 5, 207. DOI: 10.1007/s13204-014-0307-4.
  • 42. Koleva, I.I., Beek, T.V., Linssen, J.P., De Groot, A. & Evstatieva, L.N.(2002). Screening of Plant Extracts for Antioxidant Activity: a Comparative Study on Three Testing Methods. Phytochem. Anal., 13, 8. DOI: 10.1002/pca.611.
  • 43. Alici, E.H., Gunsel, A., Akin, M., Bilibicli, A.T., Arabaci, G. & Yarasir, M.N. (2018). Synthesis, characterization, antioxidant and antibacterial properties of non-peripherally and peripherally tetra-substituted phthalocyanines J. Coord. Chem. 71, 3077. DOI: 10.1080/00958972.2018.1511778.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4199caa1-27d8-40f5-afb7-49735f8927b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.