PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte Carlo based angular analysis of multiple scattered photons for underwater optical imaging

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Image contrast and visibility associated with underwater optical imaging systems are usually degraded by the absorbing and scattering effects of turbid waters. To improve the image contrast, laser-range-gate has been widely applied to underwater optical imaging systems. The work of Katsev et al. (Appl.Opt. 38(33), 1999, pp. 6849–6858) shows that the contrast of a shadow image is greater than that of the object image. The present paper outlines a Monte Carlo based simulation method of image formation for underwater optical imaging. It is found that the contrast of a shadow image varies with gate starting depths. The angular distribution of multiply scattered photons is obtained via semi-analytical models (Shengfu Li et al., Opt.Commun. 381, 2016, pp. 43–47). The simulated results show that increasing the gate starting depth can reduce the highly backscattered photons, thus can improve the image contrast.
Czasopismo
Rocznik
Strony
237--247
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
autor
  • Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
autor
  • Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
Bibliografia
  • [1] KATSEV I.L., ZEGE E.P., PRIKHACH A.S., Image formation with regard to object shadow for objects inside a scattering medium, Applied Optics 38(33), 1999, pp. 6849–6858.
  • [2] SHENGFU LI, GUANGHUA CHEN, RONGBO WANG, ZHENGXIONG LUO, QIXIAN PENG, Monte Carlo based angular distribution estimation method of multiply scattered photons for underwater imaging, Optics Communications 381, 2016, pp. 43–47.
  • [3] YUZHANG CHEN, WEI LI, MIN XIA, QING LI, KECHENG YANG, Super-resolution reconstruction for underwater imaging, Optica Applicata 41(4), 2011, pp. 841–853.
  • [4] YOUWEI HUANG, FENGMEI CAO, WEIQI JIN, SU QIU, Underwater pulsed laser range-gated imaging model and its effect on image degradation and restoration, Optical Engineering 53(6), 2013, article ID 061608.
  • [5] CHING TAN, SLUZEK A., SEET G., Model of gated imaging in turbid media, Optical Engineering 44(11), 2005, article ID 116002.
  • [6] GUAN JIN-GE, ZHU JING-PING, TIAN HENG, Polarimetric laser range-gated underwater imaging, Chinese Physics Letters 32(7), 2015, article ID 074201.
  • [7] XIA WANG, LING HU, QIANG ZHI, ZHEN-YUE CHEN, WEI-QI JIN, Influence of range-gated intensifiers on underwater imaging system SNR, Proceedings of SPIE 8912, 2013, article ID 89120E.
  • [8] HECKMAN P., HODGSON R., Underwater optical range gating, IEEE Journal of Quantum Electronics 3(11), 1967, pp. 445–448.
  • [9] JAFFE J.S., Computer modeling and the design of optimal underwater imaging systems, IEEE Journal of Oceanic Engineering 15(2), 1990, pp. 101–111.
  • [10] STRAND M.P., Imaging model of underwater range-gated imaging systems, Proceedings of SPIE 1537, 1991, pp. 151–160.
  • [11] SWARTZ B.A., Laser range gate underwater imaging advances, [In] Proceedings OCEANS’94. Oceans Engineering for Today’s Technology and Tomorrow’s Preservation, Vol. 2, IEEE, Brest, France, 1994, pp. II-722–II727.
  • [12] MCLEAN E.A., BURRIS H.R., STRAND M.P., Short-pulse range-gated optical imaging in turbid water, Applied Optics 34(21), 1995, pp. 4343–4351.
  • [13] BRADY D.J., CHOI K., MARKS D.L., HORISAKI R., LIM S., Compressive holography, Optics Express 17(15), 2009, pp. 13040–13049.
  • [14] DENIS L., LORENZ D., THIÉBAUT E., FOURNIER C., TREDE D., Inline hologram reconstruction with sparsity constraints, Optics Letters 34(22), 2009, pp. 3475–3477.
  • [15] RIVENSON Y., STERN A., ROSEN J., Reconstruction guarantees for compressive tomographic holography, Optics Letters 38(14), 2013, pp. 2509–2511.
  • [16] VAN HULSTEYN D.B., BENJAMIN R.F., X-ray shadowgraphing in laser-produced plasma experiments, Optics Letters 1(2), 1977, pp. 76–78.
  • [17] WOOD C.F., LEACH D.H., JIAN-ZHI ZHANG, CHANG R.K., BARBER P.W., Time-resolved shadowgraphs of large individual water and ethanol droplets vaporized by a pulsed CO2 laser, Applied Optics 27(11), 1988, pp. 2279–2286.
  • [18] WANG L., JACQUES S.L., Monte Carlo Modeling of Light Transport in Multi-layered Tissues in Standard C, University of Texas M. D. Anderson Cancer Center, 1992.
  • [19] QIANQIAN FANG, BOAS D.A., Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units, Optics Express 17(22), 2009, pp. 20178–20190.
  • [20] LIHONG WANG, JACQUES S.L., LIQIONG ZHENG, MCML – Monte Carlo modeling of light transport in multilayered tissues, Computer Methods and Programs in Biomedicine 47(2), 1995, pp. 131–146.
  • [21] WILSON B.C., ADAM G., A Monte Carlo model for the absorption and flux distributions of light in tissue, Medical Physics 10(6), 1983, pp. 824–830.
  • [22] MROCZKA J., SZCZEPANOWSKI R., Modeling of light transmittance measurement in a finite layer of whole blood – a collimated transmittance problem in Monte Carlo simulation and diffusion model, Optica Applicata 35(2), 2005, pp. 311–331.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4195611c-26f8-4649-b069-bed3c02bbda7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.