Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An image encryption scheme based on a Gaussian apertured reality-preserving fractional Mellintrans form (GARPFrMT) is proposed. The GARPFrMT was realized in the diffraction domain.The Gaussian aperture, like a soft aperture, improved the amount of light that passed through the lens compared to a hard aperture and reduced the light leakage at the edge of the lens, assisting to some extent in resisting direct attacks. In the proposed scheme, the reality-preserving transform was constructed in the diffraction domain to ensure that the cipher-text is real. The GARPFrMT is a nonlinear transformation used for eliminating potential insecurity existing in the linear image encryption system. In order to further enhance the security of the encryption system, an Arnold transform, and a bitwise XOR operation were employed for permutation and scrambling in the encryption process. Simulation results and theoretical analysis show that the proposed algorithm is feasible and capable of with standing several common attacks.
Czasopismo
Rocznik
Tom
Strony
477--495
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- University of Poitiers, XLIM Institute, 86962 Futuroscope-Chasseneuil Cedex, France
- Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
autor
- University of Poitiers, XLIM Institute, 86962 Futuroscope-Chasseneuil Cedex, France
autor
- University of Poitiers, XLIM Institute, 86962 Futuroscope-Chasseneuil Cedex, France
autor
- University of Poitiers, XLIM Institute, 86962 Futuroscope-Chasseneuil Cedex, France
autor
- Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
autor
- Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
Bibliografia
- [1] REFREGIER P., JAVIDI B., Optical image encryption based on input plane and Fourier plane random encoding, Optics Letters 20(7), 1995, pp. 767–769, DOI:10.1364/OL.20.000767.
- [2] SITU G.H., ZHANG J.J., Double random-phase encoding in the Fresnel domain, Optics Letters 29(14), 2004, pp. 1584–1586, DOI:10.1364/OL.29.001584.
- [3] HE W.Q., PENG X., MENG X.F., A hybrid strategy for cryptanalysis of optical encryption based on double-random phase–amplitude encoding, Optics & Laser Technology 44(5), 2012, pp. 1203–1206, DOI:10.1016/j.optlastec.2012.01.021.
- [4] WANG Y., QUAN C., TAY C.J., Asymmetric optical image encryption based on an improved amplitude–phase retrieval algorithm, Optics and Lasers in Engineering 78, 2016, pp. 8–16, DOI:10.1016/j.optlaseng.2015.09.008.
- [5] UNNIKRISHNAN G., SINGH K., Double random fractional Fourier-domain encoding for optical security, Optical Engineering 39(11), 2000, pp. 2853–2859, DOI:10.1117/1.1313498.
- [6] DORSCH R.G., LOHMANN A.W., Fractional Fourier transform used for a lens-design problem, Applied Optics 34(20), 1995, pp. 4111–4112, DOI:10.1364/AO.34.004111.
- [7] LOHMANN A.W., Image rotation, Wigner rotation, and the fractional Fourier transform, Journal of the Optical Society of America A 10(10), 1993, pp. 2181–2186, DOI:10.1364/JOSAA.10.002181.
- [8] CHEN L.F., CHANG G.J., HE B.Y., MAO H.D., ZHAO D.M., Optical image conversion and encryption by diffraction, phase retrieval algorithm and incoherent superposition, Optics and Lasers in Engineering 88, 2017, pp. 221–232, DOI:10.1016/j.optlaseng.2016.08.013.
- [9] HENNELLY B.M., SHERIDAN J.T., Image encryption and the fractional Fourier transform, Optik 114(6), 2003, pp. 251–265, DOI:10.1078/0030-4026-00257.
- [10] PENG X., ZHANG P., WEI H., YU B., Known-plaintext attack on optical encryption based on double random phase keys, Optics Letters 31(8), 2006, pp. 1044–1046, DOI:10.1364/OL.31.001044.
- [11] FRAUEL Y., CASTRO A., NAUGHTON T.J., JAVIDI B., Resistance of the double random phase encryption against various attacks, Optics Express 15(16), 2007, pp. 10253–10265, DOI:10.1364/OE.15.010253.
- [12] WANG X.G., ZHAO D.M., Multiple-image encryption based on nonlinear amplitude-truncation and phase-truncation in Fourier domain, Optics Communications 284(1), 2011, pp. 148–152, DOI:10.1016/j.optcom.2010.09.034.
- [13] JOSHI M., SHAKHER C., SINGH K., Logarithms-based RGB image encryption in the fractional Fourier domain: a non-linear approach, Optics and Lasers in Engineering 47(6), 2009, pp. 721–727, DOI:10.1016/j.optlaseng.2008.11.003.
- [14] ZHOU N.R., WANG Y.X., GONG L., Novel optical image encryption scheme based on fractional Mellin transform, Optics Communications 284(13), 2011, pp. 3234–3242, DOI:10.1016/j.optcom.2011.02.065.
- [15] ZHOU N.R., WANG Y.X., WU J.H., Image encryption algorithm based on the multi-order discrete fractional Mellin transform, Optics Communications 284(24), 2011, pp. 5588–5597, DOI:10.1016/j.optcom.2011.08.034.
- [16] ZHOU N.R., LI H., WANG D., PAN S., ZHOU Z., Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform, Optics Communications 343, 2015, pp. 10–21, DOI:10.1016/j.optcom.2014.12.084.
- [17] ZHOU N.R., WANG Y.X., GONG L., CHEN X., YANG Y., Novel color image encryption algorithm based on the reality preserving fractional Mellin transform, Optics & Laser Technology 44(7), 2012, pp. 2270–2281, DOI:10.1016/j.optlastec.2012.02.027.
- [18] WANG K.L., ZHAO C., Analytical solution for an anomalous hollow beam in a fractional Fourier transforming optical system with a hard aperture, Optics & Laser Technology 44(5), 2012, pp. 1232–1239, DOI:10.1016/j.optlastec.2012.01.005.
- [19] SAZBON D., RIVLIN E., ZALESKY Z., MENDLOVIC D., Optical transformations in visual navigation, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, IEEE Computer Society, Barcelona, Spain, 2000, DOI:10.1109/ICPR.2000.902881.
- [20] SAZBON D., ZALEVSKY Z., RIVLIN E., MENDLOVIC D., Using Fourier/Mellin-based correlators and their fractional versions in navigational tasks, Pattern Recognition 35(12), 2002, pp. 2993–2999, DOI:10.1016/S0031-3203(02)00018-3.
- [21] ZHOU N.R., JIANG H., GUO L.H., XIE X.W., Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging, Optics and Lasers in Engineering110, 2018, pp. 72–79, DOI:10.1016/j.optlaseng.2018.05.014.
- [22] SUI L., LIU B., WANG Q., LI Y., LIANG J., Color image encryption by using Yang–Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional Sine logistic modulation map, Optics and Lasers in Engineering 75, 2015, pp. 17–26, DOI:10.1016/j.optlaseng.2015.06.005.
- [23] DING W., QI D.X., Digital image transformation and information hiding and disguising technology, Chinese Journal of Computers 21, 1998, pp. 838–843.
- [24] LIU Z.J., GONG M., DOU Y.K., LIU F., LIN S., AHMAD M.A., DAI J.M., LIU S.T., Double image encryption by using Arnold transform and discrete fractional angular transform, Optics and Lasers in Engineering 50(2), 2012, pp. 248–255, DOI:10.1016/j.optlaseng.2011.08.006.
- [25] VENTURINI I., DUHAMEL P., Reality preserving fractional transforms [signal processing applications], 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, DOI:10.1109/ICASSP.2004.1327083.
- [26] XIN Y., TAO R., WANG Y., Real-value encryption of digital image utilizing fractional Fourier transform, Optical Technology 34, 2008, pp. 498–508.
- [27] ZHANG Y., TANG Y.J., A plaintext-related image encryption algorithm based on chaos, Multimedia Tools and Applications 77, 2018, pp. 6647–6669, DOI:10.1007/s11042-017-4577-1.
- [28] CHAI X.L., GAN Z.H., CHEN Y., ZHANG Y.S., A visually secure image encryption scheme based on compressive sensing, Signal Processing 134, 2017, pp. 35–51, DOI:10.1016/j.sigpro.2016.11.016.
- [29] ALVAREZ G., LI S.J., Some basic cryptographic requirements for chaos-based cryptosystems, International Journal of Bifurcation and Chaos, 16(8), 2006, pp. 2129–2151.
- [30] ZAHMOUL R., EJBALI R., ZAIED M., Image encryption based on new Beta chaotic maps, Optics and Lasers in Engineering 96, 2017, pp. 39–49, DOI:10.1016/j.optlaseng.2017.04.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4194418e-be9b-41df-b227-2bd1852309d6