PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Amplitude demodulation of interferometric signals with a 2D Hilbert transform

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Hilbert transform and the analytic signal are widely known tools of 1D signal pro cessing. They are useful for many applications, such as AM-FM demodulation or edge detection. Developing the multidimensional generalization of this method is particularly important for the purposes of image processing. Unfortunately, it is not obvious how to generalize the transform, keeping its essential properties. In this paper I survey some ideas: basic approaches with spectral masks imitating 1D signum function, the spiral phase operator method and the method involving quaternionic Fourier transform. I present and compare how these algorithms are useful for the amplitude demodulation of typical interferometric images.
Rocznik
Strony
8--11
Opis fizyczny
Bibliogr. 15 poz., tab., rys.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Mechatronics
Bibliografia
  • [1] Gabor, D. “Theory of communication”. Journal of the IEE 93 (1946): 429–457.
  • [2] Powell, R.L., and K.A. Stetson. “Interferometric vibration analysis by wavefront reconstruction”. Journal of the Optical Society of America 55 (1965): 1593–1597.
  • [3] Onodera, R., H. Watanabe, and Y. Ishii. “Interferometric Phase-Measurement Using a One-Dimensional Discrete Hilbert Transform”. Optical Review 1(12), 2005: 29–36.
  • [4] Kohlmann, K. “Corner detection in natural images based on the 2D Hilbert Transform”. Signal Processing 48 (1996): 225–234.
  • [5] Hahn, S.L. “Multidimensional complex signals with single-orthant spectra”. Proceedings of the IEEE 8(80), 1992: 1287–1300.
  • [6] Lorenzo-Ginori, J.V. “An Approach to the 2D Hilbert Transform for Image Processing Ap plications”. Lecture Notes in Computer Science. Springer Berlin, 2007: 157--165.
  • [7] Larkin, K.G., D.J. Bone, and M.A. Oldfield. “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform”. Journal of the Optical Society of America 8(18), 2001: 1862–1870.
  • [8] Larkin, K.G. “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform”. Journal of the Optical Society of America 8(18), 2001: 1871–1881.
  • [9] Yang, X., Q. Yu, and S. Fu. “A combined method for obtaining fringe orientations of ESPI”. Optics Communications 273 (2007): 60–66.
  • [10] Onodera, R., Y. Yamamoto, and Y. Ishii. “Signal processing of interferogram using a two-dimensional discrete Hilbert transform”. Fringe 2005. Springer Berlin, 2006: 82–89.
  • [11] Felsberg, M., and G. Sommer. “The Monogenic Signal”. IEEE Transactions on Signal Process ing 12(49), 2001: 3136–3144.
  • [12] Bülow, T., and G. Sommer. Multi-dimensional signal processing using an algebraically extended signal representation. AFPAC 1997. LNCS, 1315, Springer, Heidelberg, 148–163.
  • [13] Pei, S.C., J.J. Ding, and J.H. Chang. “Efficient Implementation of Quaternion Fourier Trans form, Convolution, and Correlation by 2-D Complex FFT”. IEEE Transactions on Signal Processing 11(49), 2001: 2783–2797.
  • [14] Patorski, K., and A. Styk. “Interferogram intensity modulation calculations using temporal phase shifting: error analysis”. Optical Engineering 8(45), 2006: 085602.
  • [15] Styk, A., and K. Patorski. “Derivation of quasi-parallel glass plate parameters tested in a Fizeau interferometer”. Proceedings of SPIE 6616 (2007): 66161W.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-41933e46-3329-46d7-9caa-8ad530a46991
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.