PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental research of the impact of ship’s rolling on the performance of PV panels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the International Maritime Organization (IMO) to reduce by half the amount of greenhouse gases emitted by marine ships by 2050, and its vision of the fastest total decarbonisation in the maritime shipping industry within the present century, calls for implementation with various means of decarbonisation. The IMO approaches the process of decarbonisation in two phases. Firstly, short-term, compact projects are to be considered, next, more complex, medium- and long-term solutions should be aimed at. The preferred arrangements to be applied are photovoltaic systems. Their performance depends to a high degree on the solar incidence angle. In the case of a ship swinging as a result of its course in relation to the wave and incidence direction, the incidence angle undergoes significant periodic changes with a significant effect on the power generated by the PV panels. As a result, the total amount of energy produced by the PV panels diminishes. The paper presents experimental research results obtained on the stand that allowed the investigation of PV panels in simulated marine conditions. Two characteristic positions of a PV panel’s rotation axis in relation to the solar rays’ incidence direction were investigated. It was proved for both variants that the rolling period and solar incidence angle affected the power generated by the PV panel.
Rocznik
Tom
Strony
132--144
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology Szczecin Poland
  • West Pomeranian University of Technology Szczecin Poland
Bibliografia
  • 1. International Maritime Organization, (2022) ‘Initial IMO GHG Strategy’ [Online]. Available: https://www.imo.org/ en/ MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx.
  • 2. W. Tarelko, ‘The effect of hull biofouling on parameters characterizing ship propulsion system efficiency’, Polish Maritime Research, No. 4 (85), Vol. 21; pp. 27-34, 2014, DOI:102478/pmr-2014-0038.
  • 3. C. Dymarski, ‘A concept design of diesel–hydraulic propulsion system for passenger ship intended for inland shallow water navigation’, Polish Maritime Research, No. 3 (103), Vol. 26; pp. 30-38, 2019, DOI:102478/pmr-2019-0043.
  • 4. W. Litwin, D. Piątek, W. Lesniewski, K. Marszałkowski, ‘50’ Sail catamaran with hybrid propulsion, design, theoretical and experimental studies’, Polish Maritime Research, No. 2 (114), Vol. 29; pp. 12-18, 2022, DOI:102478/pmr-2022-0012.
  • 5. M. Kunicka, W. Litwin, ‘Energy efficient small inland passenger shuttle ferry with hybrid propulsion-concept design, calculations and model tests’, Polish Maritime Research, No. 2 (102), Vol. 26; pp. 85-92, 2019, DOI:102478/ pmr-2019-0028.
  • 6. P. Geng, ‘State of charge estimation method for lithiumion batteries in all-electric ships based on LSTM neutral network’, Polish Maritime Research, No. 3 (107), Vol. 27; pp. 100-108, 2020, DOI:102478/pmr-2020-0051.
  • 7. J. Lv, Y. Lin, R. Zhang, B. Li and H. Yang, ‘Assisted propulsion device of a semi-submersible ship based on the Magnus effect’, Polish Maritime Research, No. 3 (115), Vol. 29; pp. 21-34, 2022, DOI:102478/pmr-2022-0023.
  • 8. O. Konur and K. E. Erginer, ‘Effect of sea water cooling systems to the energy efficiency of solar panels on marine vessels’ in Proceedings of the 2nd Global Conf. on Innovation in Marine Technology and Future of Marine Transportation, Bodrum, Mugla, Turkey, 2016.
  • 9. O. Konur, S. A. Kormaz, O. Yuksel, Y. Gulmez, A. Erdogan, K. E. Erginer, C. O. Colpan, ‘Thermodynamic modelling of seawater cooled foldable PV panel system’, in Proceedings of the 7th Global Conf. on Global Warming (GCGW-2018), Izmir, Turkey, 2018.
  • 10. S. Odeh and M. Behnia, ‘Improving photovoltaic module efficiency using water cooling’, Heat Transf. Eng., vol. 30, no. 6, pp. 499-505, 2009, doi:org/10.1080/01457630802529214.
  • 11. K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, H. El-Sherif, ‘Enhancing the performance of photovoltaic panels by water cooling’, Ain Shams Eng. J., vol. 4, no. 4, pp. 869-877, Dec. 2013, doi:org/10.1016/j.asej.2013.03.005.
  • 12. M. K. Smith, H. Selbak, C. C. Wamser, N. U. Day, M. Krieske, D. J. Sailor, T. N. Rosenstiel, ‘Water cooling method to improve the performance of field-mounted, insulated, and concentrating photovoltaic modules’, ASME J. Sol. Energy Eng., vol. 136, no. 3, Aug. 2014, doi:org/10.1115/1.4026466.
  • 13. Z. Zapałowicz and W. Zeńczak, ‘The possibilities to improve ship’s energy efficiency through the application of PV installation including cooled modules’, Renew. Sustain. Energy Rev., vol. 143, pp. 1-16, 2021, doi:org/10.1016/j. rser.2021.110964.
  • 14. I. Kobougias, E. Tatakis, J. Prousalidis, ‘PV systems installed in marine vessels: technologies and specifications’, Adv. Power El., vol. 2013, pp. 1-8, doi:org/ 10.1155/2013/831560.
  • 15. W. Laursen, ‘Putting solar technology into the hybrid mix’, Motor Ship, vol.. 3, pp. 24-27, Apr. 2012.
  • 16. L. Hai, B. Yifei, W. Shuli, C. Y. David, H. Ying-Yi, D. Jinfeng, P. Cheng, ‘Modeling and stability analysis of hybrid PV/ diesel/ESS in ship power system’, Inventions, vol. 1, no. 1, 2016, doi: org/10.3390/inventions1010005.
  • 17. H. Lan, S. Wen, Y. Y Hong , D. C. Yu, L. Zhang, ‘Optimal sizing of hybrid PV/diesel/battery in ship power system’, Appl. Energy, vol. 158, pp. 26-34, Nov. 2015, doi:org/10.1016/j.apenergy.2015.08.031.
  • 18. S. Wen, H. Lan, Y. Y. Hong, D. C. Yu, L. Zhang L, P. Cheng, ‘Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system’, Appl. Energy, vol. 175, pp. 158-167, 2016, doi:org/10.1016/japenergy.2016.05.003.
  • 19. K. Liu, Q. Zhang, X. Qi, Y. Han, F. Lu, ‘Estimation of PV output power in moving and rocking hybrid energy marine ships’, Appl. Energy, vol. 204, pp. 362-372, 2017, doi:org/10.1016/japenergy.2017.07.014.
  • 20. Y. Qiu, C. Yuan, J. Tang, X. Tang, ‘Techno-economic analysis of PV systems integrated into ship power grid: A case study’, En. Convers. Manag., vol. 198, pp. 1-12, Aug. 2019, doi:org/10.1016/j.enconman.2019.111925.
  • 21. S. Nasiri, M. Parniani, F. Blaabjerg, S. Peyghami, ‘Analysis of all-electric ship motions impact on PV system output power in waves’, in Proceedings of 2022 IEEE/AIAA Transportation Electrification Conference an Electric Aircraft Technologies Symposium, pp. 450-45, 2022, doi:10.1109/ITEC53557.2022.9813953.
  • 22. M. Hann, ‘Computer analysis of the reliability and safety of machinery and ship structures subjected to rocking’ Gdańsk: Okrętownictwo i Żegluga, 2001.
  • 23. K. Niklas, A. Karczewski, ‘Determination of seakeeping performance for a case study vessel by the strip theory method’, Polish Maritime Research, No. 4 (108), Vol. 27; pp. 4-16, 2020, DOI:102478/pmr-2020-0061.
  • 24. J. Dudziak, ‘Ship theory’, Gdańsk: Fundacja Promocji Przemysłu okrętowego i Gospodarki Morskiej, 2008.
  • 25. J. Dudziak, ‘Ship on the wave’, Gdańsk: Wydawnictwo Morskie, 1980.
  • 26. M. K. Ochi, Ocean Waves. The Stochastic Approach, Cambridge: Cambridge University Press, 1998.
  • 27. T. Szelangiewicz, ‘Fundamentals of the theory of designing anchor systems for holding the position of vessels’, Gdańsk: Okrętownictwo i Żegluga, 2003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-418f71a9-3702-46c3-8560-77ebfba65405
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.