PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pianki polimerowe - mechanizm spieniania, klasyfikacja i wybrane technologie przetwórstwa

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Polymer foams - foaming mechanism, classification and selected manufacturing technologies
Języki publikacji
PL
Abstrakty
PL
Pomimo szerokiego zastosowania spienionych materiałów polimerowych i ich obecności w prawie każdej dziedzinie życia, fundamentalna wiedza na ich temat nie jest tak powszechna, a teoretyczne zagadnienia związane z piankami polimerowymi rzadko poruszane są w polskiej literaturze naukowej. W związku z tym, w artykule opisano etapy procesu spieniania, klasyfikację oraz dokonano przeglądu literatury dotyczącej wybranych technologii przetwórstwa pianek polimerowych.
EN
Despite the wide use of foamed polymer materials and their presence in almost every area of life, fundamental knowledge about them is not so common, and theoretical subjects related to polymer foams are rarely raised in Polish scientific literature. Therefore, the article describes the stages of the foaming process, classification and literature review concerning selected technologies of polymer foam processing.
Twórcy
  • Instytut Inżynierii Materiałów Polimerowych i Barwników, ul. M, Skłodowskiej-Curie 55, 87-100 Toruń
  • Politechnika Śląska, Wydział Mechaniczny Technologiczny, Instytut Materiałów Inżynierskich i Biomedycznych, ul. Konarskiego 18a, 44-100 Gliwice
Bibliografia
  • 1. Tsivintzelis I., Panayiotou C, Designing Issues in Polymer Foaming with Supercritical Fluids, Macromolecular Symposia 2013, Volume 331-332, p. 109-114.
  • 2. Di Maio E., Kiran E., Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges, Journal of Supercritical Fluids, 2018, Volume 134, p. 157-166.
  • 3. Tsivintzelis I., et al., Foaming of polymers with supercritical fluids: A thermodynamic investigation, Journal of Supercritical Fluids, 2016, Volume 110, p. 240-250.
  • 4. Thirumal M., Rigid Polyurethane Foams: Preparation, Characterization and SpeciaIty Applications, Ph.D Theses of IIT Kharagpur, Rubber Technology Centre, 2010, p. 1.
  • 5. Kozłowski M., Kozłowska A., Frąckowiak S., Materiały polimerowe o strukturze komórkowej, Polimery 2010, 55, nr 10, s. 726-739
  • 6. Raps D., et al., Past and present developments in polymer bead foams and bead foaming technology, Polymer, 2015, Volume 56, p. 5-19
  • 7. Zhang Q., Xanthos M., Dey S.K., Parameters Affecting the ln-Line Measurement of Gas Solubility in Thermoplastic Melts during Foam Extrusion, Journal of cellular plastics, July 2001, Volume 37, p. 284-292
  • 8. Lee E. K., Novel Manufacturing Processes for Polymer Bead Foams, Degree of Doctor of Philosophy, University of Toronto, 2010, p. 15-17
  • 9. Colton J.S., Suh N.P., The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations, Polymer Engineering and Science, 1987, Volume 27, Issue 7, p. 485-492.
  • 10. Gunton J.D., Homogeneous Nucleation, Journal of Statistical Physics, June 1999, Volume 95, Issue 5-6, p.903-921.
  • 11. Landrock A.H., Handbook of Plastic Foams,Noyes Publications, 1995, p. 6.
  • 12. Goel S.K., Beckman E.J., Generation of microcellular polymeric foam using supercritical carbon dioxide. II: Cell growth and skin formation, Polymer Engineering and Science, 1994,Volume 34, p. 1137 -1147.
  • 13. Macyszyn J., Kozłowski M., Materiały biodegradowalne o strukturze komórkowej, Interdyscyplinarne Zagadnienia w Inżynierii i Ochronie Środowiska, Wrocław 2013, s. 381-386.
  • 14. Hu X.,Wouterson E.M., Liu M., Polymer Foam Technology, Handbook of Manufacturing Engineering and Technology, Springer, London, 2015, p. 125-168.
  • 15. Jawaid M., Qaiss A., Bouhfid R., Nanoclay Reinforced Polymer Composites: Natural Fibre/Nanoclay Hybrid Composites, Springer, Singapore 2016, p. 65.
  • 16. Okolieocha C., et al., Microcellular to nanocellular polymer foams: Progress (2004-2015) and future directions - A review, European Polymer Journal, 2015, Volume 73, p. 500-519.
  • 17. Klempner D., Sendijarevic V., Polymeric Foams and Foam Technology, Hanser Gardner Publications, Inc., Cincinnati, OH, 2004, p. 332-333.
  • 18. Matuana L.M., Rachtanapun P., Selke S.E.M., Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber, Journal of Applied Polymer Science, 2003, Volume 88, p. 2842-2850.
  • 19. Sauceau M., et al., New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide, Progress in Polymer Science, 2011, Volume 36, p. 749-766.
  • 20. Lee S.T., Foam Extrusion: Principles and Practice, Technomic Publishing Co., Lancaster, 2000, p. 19.
  • 21. Zepnik S., et al., Cellulose Acetate for Thermoplastic Foam Extrusion, Cellulose - Biomass Conversion, edited by Theo van de Ven and John Kadla, InTech, 2013, p. 17-44.
  • 22. Quinn S., Chemical blowing agents: providing production, economic and physical improvements to a wide range of polymers, Plastics Additives & Compounding, May 2001, Volume 3, Issue 5, p. 16-21.
  • 23. Guanghong H., Yue W., Microcellular Foam Injection Molding Process, Some Critical Issues for Injection Molding, edited by Jian Wang, InTech, 2012, p. 175-202.
  • 24. Liu P.S., Chen G.F., Porous materials, Chapter Seven - Producing Polymer Foams, Butterworth-Heinemann, United Kingdom. 2014, p. 345-382.
  • 25. Altan M., Thermoplastic Foams: Processing, Manufacturing, and Characterization, Recent Research in Polymerization, edited by Nevin Cankaya, InTech, 2018, p. 117-137.
  • 26. Mills N. J., Polyolefin Foams, Smithers Rapra Press, 2004, p. 11.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-418dcfeb-995a-4e21-8428-a2135ec71bf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.