Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cast-in-place steel plates with headed steel studs constitute a common type of connection system in tilt-up members. These connection systems used in composite construction play an important role in vertical and lateral load transfer mechanisms and in the energy dissipation of seismic responses by allowing sufficient ductility and controlling cracks in the concrete elements. Due to the relatively thin concrete panel thickness, it is difficult to attain adequate ductility in connection system. This study examined design parameters, including the embedment depth-to-stud diameter ratio (hef/d), panel thickness, and supplementary reinforcement, in order to propose effective reinforcing methods to prevent premature failure such as pry-out failure. In addition, this study investigated the feasibility of current existing formulas, including those found in the American Concrete Institute 318M-14 provisions and in the Precast/Prestressed Concrete Institute Handbook with respect to the design variables. This study also investigated the difference between monotonic and cyclic test results and compared the results obtained from the literature.
Czasopismo
Rocznik
Tom
Strony
430--441
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Department of Architectural Engineering, Gachon University, Gyeonggido, Republic of Korea
autor
- Department of Architectural Engineering, Chungnam National University, Daejeon, Republic of Korea
autor
- Department of Civil Engineering, Hongik University, Seoul, Republic of Korea
autor
- Department of Architectural Engineering, Chungnam National University, Daejeon, Republic of Korea
Bibliografia
- [1] M.W. Labib, A.S. Ayoub, Y.L. Mo, Embedded steel plate supports in concrete tilt-up precast walls, Mag. Concr. Res. 66 (12) (2014) 627–643.
- [2] F. Greco, L. Leonetti, R. Luciano, A multiscale model for the numerical simulation of the anchor bolt pull-out test in lightweight aggregate concrete, Constr. Build. Mater. 95 (1) (2015) 860–874.
- [3] P.A. Prieto-Muñoz, H.M. Yin, R.B. Testa, Mechanics of an adhesive anchor system subjected to a pullout load. I. Elastic analysis, J. Struct. Eng. 140 (2) (2014) 04013052.
- [4] Ö. Çalışkan, S. Yılmaz, H. Kaplan, N. Kıraç, Shear strength of epoxy anchors embedded into low strength concrete, Constr. Build. Mater. 38 (2013) 723–730.
- [5] P.R. Grosser, Load-Bearing Behavior and Design of Anchorages Subjected to Shear and Torsion Loading in Uncracked Concrete, (Dissertation), Universität, Stuttgart, 2012. p. 359.
- [6] R. Mallée, Behavior and design of anchors close to an edge under torsion, in: R. Eligehausen (Ed.), Connections Between Steel and Concrete, RILEM Publications, Stuttgart, Germany, 2001 178–185.
- [7] L. Pallarés, J.F. Hajjar, Headed Steel Stud Anchors in Composite Structures. Part II. Tension and Interaction, Report No. NSEL-014, Newmark Structural Laboratory Report Series (1940-9826), University of Illinois at Urbana- Champaign, Urbana, IL, 2009.
- [8] http://www.seismicresilience.org.nz/topics/building-envelope/ commercial-buildings/wall-claddings-commercial/ (12.16.2016).
- [9] America Concrete Institute, ACI 318M-14: Building Code Requirements for Structural Concrete and Commentary, ACI, Farmington Hills, MI, USA, 2014.
- [10] N.S. Anderson, D.F. Meinheit, Design criteria for headed stud groups in shear. Part 1. Steel capacity and back edge effects, PCI J. 45 (5) (2000) 46–75.
- [11] N.S. Anderson, D.F. Meinheit, Pryout capacity of cast-in headed stud anchors, PCI J. 50 (2) (2005) 90–112.
- [12] N.S. Anderson, D.F. Meinheit, A review of headed-stud design criteria in the sixth edition of the PCI design handbook, PCI J. 1 (4) (2007) 1–20.
- [13] PCI (Precast/Prestressed Concrete Institute), PCI Design Handbook Precast and Prestressed Concrete, 6th ed., PCI, Chicago, IL, USA, 2004.
- [14] American Institute of Steel Construction, Manual of Steel Construction, 14th ed., AISC, Chicago, 2011.
- [15] K. Jebara, J. Ožbolt, J. Hofman, Pryout failure capacity of single headed stud anchors, Mater. Struct. 49 (2016) 1775–1792.
- [16] K. Lemieux, R. Sexsmith, G. Weiler, Behavior of embedded steel connectors in concrete tilt-up panels, ACI Struct. J. 95 (4) (1998) 400–410.
- [17] N. Hammill, A. Ghali, Punching shear resistance of corner slab-column connections, ACI Struct. J. 91 (6) (1994) 697–707.
- [18] L. Herman, Breakout capacity of anchors in concrete. Part 2. Shear, ACI Struct. J. 101 (6) (2004) 821–829.
- [19] J.G. Ollgaard, R.G. Slutter, J.W. Fisher, Shear strength of stud connectors in lightweight and normal-weight concrete, AISC Eng. J. 8 (2) (1971) 55–64.
- [20] G. Zhao, Tragverhalten von randfernen Kopfbolzenverankerungen bei Betonbruch,(Load-Carrying Behavior of Headed Stud Anchors in Concrete Breakout Away From an Edge)), Mitteilung 1994/1, Institut für Werkstoffe im Bauwesen, Universität Stuttgart, Germany, 1994 (in German).
- [21] L. An, K. Cederwall, Push-out tests on studs in high strength and normal strength concrete, J. Constr. Steel Res. 36 (1) (1996) 15–29.
- [22] A. Pan, P. Moehle, Lateral displacement ductility of reinforced concrete flat plates, ACI Struct. J. 86 (3) (1989) 250–285.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-418d7df7-1b9b-4db3-9fd6-5005770d49bf