PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Rapid Analysis of two Classes of Pesticides in Food Wastewater by Quechers-Liquid Chromatography/Mass Spectrometry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rapid analytical method was developed in response to increasing concern over the environmental impact of azoles (sterol biosynthesis inhibitors) and neonicotinoids (nicotinic acetylcholine receptor site). These chemicals are commonly used to protect fruit and vegetables crops against fungi and pests. Seven insecticides and twenty one fungicides commonly occurring in food industrial wastewater have been determined. For this purpose, active substances from two new pesticide classes were extracted and isolated by QuEChERS by addition of acetonitrile, buffering salts and chitin as a clean-up sorbent. The novelty of this procedure was one step sample preparation including extraction and removing of co-extracts in short time. Instrumental analysis was conducted by liquid chromatography coupled with mass spectrometry using multiple reaction monitoring. The limits of detection ranged from 0.002 to 0.005 μg·L-1 with satisfactory accuracy and precision The recoveries for the pesticides ranged from 81–103%, with high repeatability (n = 3, RSD ≤ 9%) and low LOQs (0.01 μg·L-1). Matrix effects calculated were less than 12% for all analyses. The method was applied to routine analysis of food industrial wastewater. Concerning the results, total pesticide levels in most cases were below 1 μg·L -1. The most significant pesticides in terms of concentration and frequency of detection were acetamiprid (0.07 μg· L-1); tebuconazole (1.2 μg· L-1) and thiacloprid (0.04 μg·L-1).
Słowa kluczowe
Rocznik
Strony
97--105
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
  • Plant Protection Institute – National Research Institute, Laboratory of Pesticide Residues, Chelmonskiego 22, 15-195 Bialystok, Poland
  • Plant Protection Institute – National Research Institute, Laboratory of Pesticide Residues, Chelmonskiego 22, 15-195 Bialystok, Poland
autor
  • Plant Protection Institute – National Research Institute, Laboratory of Pesticide Residues, Chelmonskiego 22, 15-195 Bialystok, Poland
  • Bialystok University of Technology, Wiejska 45, 15-351 Bialystok, Poland
  • Bialystok University of Technology, Wiejska 45, 15-351 Bialystok, Poland
  • Bialystok University of Technology, Wiejska 45, 15-351 Bialystok, Poland
Bibliografia
  • 1. Al-Degs Y. S., Al-Ghouti M. A., El-Sheikh A. H., 2009. Simultaneous determination of pesticides at trace levels in water using multiwalled carbon nanotubes as solid-phase extractant and multivariate calibration. Journal of Hazardous Materials, 169, 128–135.
  • 2. Anastassiades M., Lehotay S.J., Stajnbaher D, Schenck F.J., 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86, 412–431.
  • 3. BASF, 2013. Insecticide Mode of Action. BASF Crop Protection Division Global Strategic Marketing Insecticides, 23–26.
  • 4. Bonansea R. I., Amé M. V., Wunderlin D. A., 2013. Determination of priority pesticides in water samples combining SPE and SPME coupled to GC– MS. A case study: Suquía River basin (Argentina). Chemosphere, 90, 1860–1869.
  • 5. CEN/TC, 2007. Foods of plant origin: Determination of pesticide residues using GC-MS and/or LC-MS/ MS following acetonitrile extraction/partitioning and cleanup by dispersive SPE QuEChERS method. European Committee for Standardization, Brussels, 275.
  • 6. Ebrahimi M., Eshaghi Z., Samadi F., Hosseini M.- S., 2011. Ionic liquid mediated sol–gel sorbents for hollow fiber solid-phase microextraction of pesticide residues in water and hair samples. Journal of Chromatography A, 1218, 8313–8321.
  • 7. EFSA, 2009a. Scientific opinion on risk assessment for a selected group of pesticides from the triazole group to test possible methodologies to assess cumulative effects from exposure through food from these pesticides on human health. EFSA Journal, 7, 1167.
  • 8. El-Kabbany S., Rashed M.M., Zayed M.A., 2000. Monitoring of the pesticide levels in some water supplies and agricultural land, in El-Haram, Giza (A.R.E.). Journal of Hazardous Materials, A72, 11–21.
  • 9. ENVIRON Poland, 2004. The best available techniques (BAT) – guidelines for the food industry: fruit – vegetables. Ministry of the Environment, Warsaw.
  • 10. EPPO Workshop, 2010. Workshop on Azole fungicides and Septoria leaf blotchcontrol Conference Centre, Rothamsted Research, Harpenden(GB), 2010-12-07/09.
  • 11. FAO FAOSTAT , 2012. http : // faostat.fao.org / site / 424 / DesktopDefault.aspx ? Page ID = 424 # ancor (accessed 14.02.13).
  • 12. Hof H., 2001. Critical annotations to the use of azole antifungals forplant protection. Antimicrob Agents Chemother, 45, 2987–2990.
  • 13. Kuranchie-Mensah H., Manukure Atiemo S., Maud Naa-Dedei Palm L., Blankson-Arthur S., Osei Tutu A., Fosu P., 2012. Determination of organochlorine pesticide residue in sediment and water from the Densu river basin, Ghana. Chemosphere, 86, 286–292.
  • 14. Kwon H., Lehotay S.J., Geis-Asteggiante L., 2012. Variability of matrix effects in liquid and gas chromatography–mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. Journal of Chromatography A, 1270, 235–245.
  • 15. Lehotay S.J., Mastovska K., Lightfield A.R., 2005. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. Journal of AOAC International, 88(2), 615–629.
  • 16. Margoum C., Guillemain C., Yang X., Coquery M., 2013. Stir bar sorptive extraction coupled to liquid chromatography-tandem mass spectrometry for the determination of pesticides in water samples: Method validation and measurement uncertainty. Talanta, 116, 1–7.
  • 17. Medina-Pastor P., Valverde A., Pihlsotrm T., Masselter S., Gamon M., Mezcua M., Rodriguez-Torreblanca C., Fernandez-Alba A. R., 2011. Comparative study of the main top-down approaches for the estimation of measurement uncertainty in multiresidue analysis of pesticides in fruits and vegetables. Journal of Agricultural and Food Chemistry, 59, 7609–7619.
  • 18. Moawed E.A., Abulkibash A.B., El-Shahat M.F., 2015. Synthesis of tannic acid azo polyurethane sorbent and its application for extraction and determination of atrazine and prometryn pesticides in foods and water samples. Environmental Nanotechnology, Monitoring and Management, 3, 61–66.
  • 19. Nawirska A., 2007. Economy of water-sewage in the industry fruit-vegetable. Agro Industry, 3, 65–67.
  • 20. Papadakis E. N., Vryzas Z., Kotopoulou A., Kintzikoglou K., Makris K. C., Papadopoulou- Mourkidou E., 2015. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicology and Environmental Safety, 116, 1–9.
  • 21. Payá P., Anastassiades M., Mack D., Sigalova I., Tasdelen B., Oliva J., Barba A., 2007. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Analytical and Bioanalytical Chemistry, 389, 1697–1714.
  • 22. SANCO/12571/2013, 2013. Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. Available online: http://ec.europa.eu/food/plant/ plant_protection_products/guidance_documents/ docs/qualcontrol_en.pdf (accessed 10.06.14).
  • 23. Silva E., Daam M. A., José Cerejeira M., 2015. Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins. Chemosphere, 135, 394–402.
  • 24. Singer H., Jaus S., Hanke I., Lück A., Hollender J., Alder A.C., 2010. Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water. Environmental Pollution, 158, 3054–3064.
  • 25. Skoczko I., 2009. Attempts to use coal dusty for the disposal of pesticides in wastewater. Central - Pomeranian Scientific Society for Environmental Protection, 11, 1307–1315.
  • 26. Souza Caldas S., Rombaldi C., Oliveira Arias J. L., Cardoso Marube L., Gilberto Primel E., 2016. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography tandem mass spectrometry. Talanta, 146, 676–688.
  • 27. Svorc L., Rievaj M., Bustin D., 2013. Green electrochemical sensor for environmental monitoring of pesticides: Determination of atrazine in river waters using a boron-doped diamond electrode. Sensors and Actuators B, 181, 294–300.
  • 28. Technical Learning College (TLC), 2012. Advanced Pest Control, continuing education professional development course. Advanced Pest Control, 11/15.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-418baceb-15d3-4d44-9a5c-d3fe59c552f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.