PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of thermal processes occurring in heated multilayered metal films using the dual-phase lag model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A multilayered thin metal film subjected to an ultra-short laser pulse is considered. A mathematical description of the discussed process is based on the system of the dual-phase lag equations supplemented by appropriate boundary and initial conditions. Special attention is devoted to the ideal contact conditions at the interfaces between the layers, which in the case of the dual-phase lag model must be formulated in a different way than in the macroscopic Fourier model. To solve the problem the explicit scheme of the finite difference method is developed. In the final part of the paper the example of computations is shown.
Rocznik
Strony
275--287
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Institute of Computational Mechanics and Engineering Silesian University of Technology Konarskiego 18a 44-100 Gliwice, Poland
autor
  • Institute of Computational Mechanics and Engineering Silesian University of Technology Konarskiego 18a 44-100 Gliwice, Poland
Bibliografia
  • 1. D.Y. Tzou, Macro- to Microscale Heat Transfer. The lagging behavior, Taylor and Francis, 1997.
  • 2. Z.M. Zhang, Nano/Microscale Heat Transfer, McGraw-Hill, New York, 2007.
  • 3. A.N. Smith, P.M. Norris, [in:] Heat Transfer Handbook, Adrian Bejan [Ed.], John Wiley & Sons: Hoboken, 1309–1409, 2003.
  • 4. G. Chen, D. Borca-Tasciuc, R.G. Yang, [in:] Encyclopedia of Nanoscience and Nanotechnology, Hari Singh Nalwa [Ed.], American Scientific Publishers: Stevenson Ranch, 7, 429–459, 2004.
  • 5. E. Majchrzak, B. Mochnacki, Sensitivity analysis of transient temperature field in microdomains with respect to the dual phase lag model parameters, International Journal for Multiscale Computational Engineering, 12, 1, 65–77, 2014.
  • 6. B. Mochnacki, M. Paruch, Estimation of relaxation and thermalization times in microscale heat transfer model, Journal of Theoretical and Applied Mechanics, 51, 4, 837–845, 2013.
  • 7. E. Majchrzak, B. Mochnacki, A.L. Greer, J.S. Suchy, Numerical modeling of short pulse laser interactions with multi-layered thin metal films, CMES: Computer Modeling in Engineering and Sciences, 41, 2, 131–146, 2009.
  • 8. E. Majchrzak, B. Mochnacki, J.S. Suchy, Numerical simulation of thermal processes proceeding in a multi-layered film subjected to ultrafast laser heating, Journal of Theoretical and Applied Mechanics, 47, 2, 383–396, 2009.
  • 9. E. Majchrzak, Ł. Turchan, J. Dziatkiewicz, Modeling of skin tissue heating using the generalized dual-phase lag equation, Archives of Mechanics, 67, 6, 417–437, 2015.
  • 10. H. Wang, W. Dai, R. Melnik, A finite difference method for studying thermal deformation in a double-layered thin film exposed to ultrashort pulsed lasers, International Journal of Thermal Sciences, 45, 1179–1196, 2006.
  • 11. H. Wang, W. Dai, L.G. Hewavitharana, A finite difference method for studying thermal deformation in a double-layered thin film with imperfect interfacial contact exposed to ultrashort pulsed lasers, International Journal of Thermal Sciences, 47, 7–24, 2008.
  • 12. S. Singh, S. Kumar, Numerical study on triple layer skin tissue freezing using dual phase lag bio-heat model, International Journal of Thermal Sciences, 86, 12–20, 2014.
  • 13. S. Singh, S. Kumar, Numerical analysis of triple layer skin tissue freezing using non-Fourier heat conduction, Journal of Mechanics in Medicine and Biology, 16, 2, 1650017, 2015.
  • 14. J.K. Chen, J.E. Beraun, Numerical study of ultrashort laser pulse interactions with metal films, Numerical Heat Transfer, Part A, 40, 1–20, 2001.
  • 15. J.R. Ho, Ch. P. Kuo, W.S. Jiaung, Study of heat transfer in multilayered structure within the framework of dual-phase-lag heat conduction model using lattice Boltzmann method, International Journal of Heat and Mass Transfer, 46, 55–69, 2003.
  • 16. J.M. McDonough, I. Kunadian, R.R. Kumar, T. Yang, An alternative discretization and solution procedure for the dual phase-lag equation, Journal of Computational Physics, 219, 163–171, 2006.
  • 17. E. Majchrzak, B. Mochnacki, Dual-phase lag equation. Stability conditions of a numerical algorithm based on the explicit scheme of the finite difference method, Journal of Applied Mathematics and Computational Mechanics, 15, 3, 89–96, 2016.
  • 18. W. Dai, R. Nassar, A domain decomposition method for solving three-dimensional heat transport equations in a double-layered thin film with microscale thickness, Numerical Heat Transfer, Part A, 38, 243–255, 2000.
  • 19. A. Karakas, M. Tunc, U. Camdali, Thermal analysis of thin multi-layer metal films during femtosecond laser heating, Heat and Mass Transfer, 46, 1287–1293, 2010.
  • 20. B. Shen, P. Zhang, Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model, International Journal of Heat and Mass Transfer, 51, 1713–1727, 2008.
  • 21. M. Wang, N. Yang, Z.-Y. Guo, Non-Fourier heat conductions in nanomaterials, Journal of Applied Physics, 110, 064310, 7 pp., 2011 (doi:http://dx.doi.org/10.1063/1.3634078).
  • 22. S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, International Journal of Heat and Mass Transfer, 78, 58–63, 2014.
  • 23. M. Fabrizio, B. Lazzari, Stability and second law of thermodynamics in dual-phase-lag heat conduction, International Journal of Heat and Mass Transfer, 74, 484–489, 2014.
  • 24. D.W. Tang, N. Araki, Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses, International Journal of Heat and Mass Transfer, 42, 855–860, 1999.
  • 25. M.A. Al-Nimr, M. Naji, V.S. Arbaci, Nonequilibrium entropy production under the effect of the dual-phase-lag heat conduction model, ASME Journal of Heat Transfer, 122, 217–223, 2000.
  • 26. E. Majchrzak, Numerical solution of dual phase lag model of bioheat transfer using the general boundary element method, CMES: Computer Modeling in Engineering and Sciences, 69, 1, 43–60, 2010.
  • 27. E. Majchrzak, Ł. Turchan, The general boundary element method for 3D dual-phase lag model of bioheat transfer, Engineering Analysis with Boundary Elements, 50, 76–82, 2015.
  • 28. B. Yu, W.A. Yao, H.L. Zhou, H.L. Chen, Precise time-domain expanding BEM for solving non-Fourier heat conduction problems, Numerical Heat Transfer Problems, Part B – Fundamentals, 68, 6, 511–532, 2015.
  • 29. B.S. Yilbas, A.Y. Al-Dweik, Exact solution for temperature field due to non- equilibrium heating of solid substrate, Physica B, 406, 4523–4528, 2011.
  • 30. J. Escolano, F. Rodríguez, M.A. Castro, F. Vives, J.A. Martín, Exact and analytic-numerical solutions of bidimensional lagging models of heat conduction, Mathematical and Computer Modeling, 54, 7–8, 1841–1845, 2011.
  • 31. H. Askarizadeh, H. Ahmadikia, Analytical analysis of the dual-phase-lag heat transfer equation in a finite slab with periodic surface heat flux, International Journal of Engineering, 27, 6, 971–978, 2014.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-418920b6-d9d2-4307-ad96-f1ca729d2ad3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.