PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Countermovement depth – a variable which clarifies the relationship between the maximum power output and height of a vertical jump

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. Methods: One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. Results: The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. Conclusions: The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.
Słowa kluczowe
Rocznik
Strony
127--134
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
autor
  • Józef Piłsudski University of Physical Education, Warsaw, Poland
autor
  • Józef Piłsudski University of Physical Education, Warsaw, Poland
autor
  • Kazimierz Wielki University, Bydgoszcz, Poland
  • Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
autor
  • Institute of Sport – National Research Institute, Warsaw, Poland
Bibliografia
  • [1] ACHE-DIAS J., DAL PUPO J., GHELLER R.G., KÜLKAMP W., MORO A.R., Power output prediction from jump height and body mass does not appropriately categorize or rank athletes, J. Strength Cond. Res., 2016, 30, 818–824.
  • [2] BUŚKO K., MADEJ A., MASTALERZ A., Effects of the cycloergometer exercises on power and jumping ability measured during jumps performed on a dynamometric platform, Biol. Sport, 2010, 27, 35–40.
  • [3] CANAVAN P.K., VESCOVI J.D., Evaluation of power prediction equations: peak vertical jumping power in women, Med. Sci. Sport Exer., 2004, 36, 1589–1593.
  • [4] CORMIE P., MCGUIGAN M.R., NEWTON R.U., Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training, Med. Sci. Sports Exerc., 2010, 42, 1731–1744.
  • [5] DUNCAN M.J., HANKEY J., LYONS M., JAMES R.S., NEVILL A.M., Peak power prediction in junior basketballers: Comparing linear and allometric models, J. Strength Cond. Res., 2013, 27, 597–603.
  • [6] DUNCAN M.J., HANKEY J., NEVILL A.M., Peak-power estimation equations in 12-to 16-year old children: comparing linear with allometric models, Pediatr. Exerc. Sci., 2013, 25, 385–393.
  • [7] HARMAN E.A., ROSENSTEIN M.T., FRYKMAN P.N., ROSENSTEIN R.M., KRAEMER W.J., Estimation of human power output from vertical jump, J. Strength Cond. Res., 1991, 5, 116–120.
  • [8] HERTOGH C., HUE O., Jump evaluation of elite volleyball players using two methods: jump power equations and force platform, J. Sport. Med. Phys. Fit., 2002, 42, 300–303.
  • [9] HUDGINS B., SCHARFENBERG J., TRIPLETT N.T., MCBRIDE J.M., Relationship between jumping ability and running performance in events of varying distance, J. Strength Cond. Res., 2013, 27, 563–567.
  • [10] JOHNSON D.L., BAHAMONDE R., Power output estimate in university athletes, J. Strength Cond. Res., 1996, 10, 161–166.
  • [11] KUBO K., KAWAKAMI Y., FUKUNAGA T., Influence of elastic properties of tendon structures on jump performance in humans, J. Appl. Physiol., 1999, 87, 2090–2096.
  • [12] LARA-SÁNCHEZ A.J., ZAGALAZ M.L., BERDEJO-DEL-FRESNO D., MARTÍNEZ-LÓPEZ E.J., Jump peak power assessment through power prediction equations in different samples, J. Strength Cond. Res., 2011, 25, 1957–1962.
  • [13] LEES A., VANRENTERGHEM J., DE CLERCQ D., Understanding how an arm swing enhances performance in the vertical jump, J. Biomech., 2004, 37, 1929–1940.
  • [14] MANDIC R., JAKOVLJEVIC S., JARIC S., Effects of countermovement depth on kinematic and kinetic patterns of maximum vertical jumps, J. Electromyogr. Kines., 2015, 25, 265–272.
  • [15] MANDIC R., KNEZEVIC O.M., MIRKOV D.M., JARIC S., Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height, J. Hum. Kin., 2016, 52, 85–94.
  • [16] MARKOVIC G., Does plyometric training improve vertical jump height? A meta-analytical review, Brit. J. Sport. Med., 2007, 41, 349–355.
  • [17] MARKOVIC S., MIRKOV D.M., NEDELJKOVIC A., JARIC S., Body size and countermovement depth confound relationship between muscle power output and jumping performance, Hum. Mov. Sci., 2014, 33, 203–210.
  • [18] MORAN K.A., WALLACE E.S., Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping, Hum. Mov. Sci., 2007, 26, 824–840.
  • [19] NEVILL A.M., HOLDER R.L., Scaling, normalizing, and per ratio standards: an allometric modeling approach, Journal of Applied Physiology, 1995, 79, 1027–1031.
  • [20] PICKAR J.G., KANG Y.M., Paraspinal muscle spindle responses to the duration of a spinal manipulation under force control, J. Manip. Physiol. Ther., 29, 22–31.
  • [21] SALLES A.S., BALTZOPOULOS V., RITTWEGER J., Differential effects of countermovement magnitude and volitional effort on vertical jumping, Eur. J. Appl. Physiol., 2011, 111, 441–448.
  • [22] SAYERS S.P., HARACKIEWICZ D.V., HARMAN E.A., FRYKMAN P.N., ROSENSTEIN M.T., Cross-validation of three jump power equations, Med. Sci. Sport. Exer., 1999, 31, 572–577.
  • [23] STRUZIK A., ZAWADZKI J., Leg stiffness during phases of countermovement and take-off in vertical jump, Acta Bioeng. Biomech., 2013, 15, 113–118.
  • [24] STRUZIK A., ZAWADZKI J., ROKITA A., Leg stiffness and potential energy in the countermovement phase and the CMJ jump height, Biomed. Hum. Kinet., 2016, 8, 39–44.
  • [25] WISLØFF U., CASTAGNA C., HELGERUD J., JONES R., HOFF J., Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players, Brit. J. Sport. Med., 2004, 38, 285–288.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-418788af-5c65-48b5-8312-3a73ea854434
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.